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Abstract

Debris flows have been widely researched during the last decades since they are

catastrophic events with significant infrastructure and environmental impacts.

Typically, they are composed of various materials which interactions are worth

for studying, to improve the prediction of some variables, such as velocities,

forces and affected areas. Constitutive models and numerical methods are fun-

damental in broadening the knowledge of the behaviour of these phenomena.

Thus, the coupling of numerical techniques, for the different constituents of de-

bris flow is becoming indispensable to describe the behaviour of these natural

events. The coupling of Smooth Particle Hydrodynamics (SPH) and Discrete

Element Method (DEM) is presented in this paper to show the capacity to rep-

resent the interaction of several materials at the same time. SPH is employed

to represent the fluid and soil by using different constitutive models from a

continuum approach. In contrast, DEM is used to represent immersed objects

such as boulders and boundary conditions. In this sense, we can couple the

behaviour that occurs at very different scales in a unified framework suitable
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to describe heterogeneous debris flows. Benchmark cases were solved to vali-

date this new approach. The simulations show good agreement with analytical

solutions, experimental results and field data.

Keywords: SPH-DEM coupling, benchmark validation cases, debris flows

1. Introduction1

It is essential to study the movement of mass which occur on earth surface2

not only to understand the behaviour of nature but also because they can cause3

great damage and fatalities [1, 2, 3]. There are many types of mass movements4

such as landslides, debris flows, mudflows, granular flows, rock falls, avalanches,5

among others. Usually, they are classified depending on certain characteristics6

such as kind of materials, velocity and volume [4, 5, 6, 7, 8]. The materials can7

be fluids (water and air) and solids (soil and wood, for instance). The soil has8

a wide spectrum because of the mineral composition and size of the particles.9

Thus, clay or sand, and fine grains or big boulders might change the behaviour of10

the mass [9, p. 3] completely, affecting the procedure to model such phenomena.11

Debris flows have special attention in research due to their high potential12

of damage, provoked by the variability of materials, high velocities and vol-13

umes, which might travel long distances destroying everything on their path14

[10]. Three branches have appeared in an attempt to improve the models.15

First, some authors have proposed models to represent the movement of a mass16

from a continuum approach, assuming shallowness for granular flows such as17

[11, 12, 13, 14]. Others have proposed mixture models where just a single mo-18

mentum equation contain the stresses terms for two phases (fluid and soil) such19

as [15, 16, 17]. Finally, [18, 19, 20] have proposed two phases models where a20

coupling term must be defined. The models mentioned above are postulated in21

a two-dimensional Eulerian approach.22

The improvement of the computational resources and numerical methods23

has allowed increasing the complexity of modelling these phenomena, adding24

the third dimension or the interaction with obstacles [21], for instance. Because25
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of these reasons, the Lagrangian and meshless approaches have been gaining26

importance. Also, these techniques allow handling complex geometries, interac-27

tion with several methods and materials in a more natural way. For example,28

Smooth Particle Hydrodynamics, SPH henceforth, has been employed to model29

many cases in soil mechanics and fluid mechanics [22, 23, 24, 25, 26, 27, 28].30

Also, SPH has been coupled with other techniques such as Discrete Element31

Method, DEM henceforth, to represent the interaction with structures [29, 30,32

31]. Although, these two methods were developed to tackle problems at different33

scales: SPH to represent large scales directly by using constitutive laws, and34

DEM to obtain the general behaviour through the implementation of interaction35

laws in a small scale of granular assemblies [32, 33].36

Nevertheless, DEM can be used to represent big objects with complex shapes37

as well, been useful to set up boundary conditions, fluid-structures, fluid-soils38

and fluid-soil-structures interaction problems. Other methods such as Finite39

Volumes Method (FVM), Finite Elements Method (FEM), Material Point Method40

(MPM) and Lattice Boltzmann Method (LBM) have been coupled to DEM41

to predict the interaction of debris flows with moving and flexible barriers42

[34, 35, 36]. To model large-deformation problems using mesh-based methods43

(i.g., FVM, FEM and LBM) requires re-meshing, also meshing areas where there44

is no flow in a specific time step. Also, LBM is more convenient for problems45

where there is not a free surface flow. MPM has demonstrated great advan-46

tage in computational cost; however, oscillation in stress calculation is its main47

disadvantage up to now [37]. It is the purpose of the present work to employ48

methods that allows us to compute large strain in free-surface problems.49

Hence, this paper presents a new approach to couple SPH-DEM to model50

natural processes such as debris flows that might be represented by using two51

standpoints. On the one hand, SPH is used to describe the fluid and soil phases52

through the continuum assumption. In contrast, DEM is employed to model big53

boulder as single objects at the same time that the boundary conditions with54

the sphero-polyhedra approach as presented in [38, 32].55

The continuous approach is still employed to have good results at the same56
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time that reasonable computational cost. Besides, discrete elements are em-57

ployed to avoid the use of extra SPH particles in the boundary conditions or in58

moving objects which interact the fluid or soil phases.59

This paper is organised as follows: Section 2 shows the SPH method and60

the constitutive models to represent the soil and the water. Section 3 presents61

briefly the discrete element method. Section 4 contains the proposed strategy62

for coupling SPH and DEM. Section 5 presents both benchmark cases to validate63

our code. The last part of this work is presented in Section 6, which shows a64

hypothetical case of debris flow to test all the interaction forces in one single case.65

Finally, Section 7 has the conclusions regarding the techniques here employed66

based on the validation examples.67

2. SPH method68

SPH is a meshless technique employed to discretised equations which varies69

with space. This method use an interpolant to find the value of a particular70

dependant variable at an arbitrary point, xi, from the surrounding points, xj71

(Figure 1) [39, 40, 41]. The point xi can displace carrying all the information72

of several variables such as density, velocity, pressure, stresses, strains, among73

others, depending on the set of equations to be solved [23]. The mass and74

momentum conservation are the governing equations employed to represent the75

fluid and soil as a continuum as explain below.76

i
j rij

Figure 1: Approximation in SPH method.
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2.1. SPH for fluid77

The conservation equations to represent the fluid were discretised using the78

Weakly Compressible (WCSPH) approach, as shown below.79

Mass conservation80

Dρi
Dt

= ρi

n∑
j=1

mj

ρj
uij · ∇iW (rij , h)

+ δ2hcs

n∑
j=1

mj

ρj
(ρj − ρi)

xij
|xij |2 + 0.1h2

· ∇iW (rij , h) (1)

Momentum equation81

Dui
Dt

= g−
n∑
j=1

mj

(
pi
ρ2i

+
pj
ρ2j

+ Πij

)
∇iW (rij , h)

+

n∑
j=1

4mj
(µi + µj)

(ρi + ρj)2
· uij∇iW (rij , h)− afsi +

FfNi
mi

(2)

where the subindex i and j denote the point in the matter and the surround-82

ing points, respectively. n is the number of neighbouring particles. uij = ui−uj83

is the difference of the velocity between the two particles i and j, xij = xi−xj is84

the vector that contains the distance between the two particles, m is the mass,85

ρ represents the density, p is the thermodynamic pressure and g is the gravity.86

W (rij , h) the interpolating kernel, ∇i denotes the gradient of the kernel taken87

with respect to the coordinates of particle i [42].88

The second term in Equation 1 is a diffusive term know as δ-SPH, which is89

employed to eliminate the noise in the pressure field. There are three versions of90

δ-SPH, as shown in [60]. However, the version proposed by [43] was implemented91

to preserve a low computational cost at the same time that a smooth pressure92

field is obtained. δ = 0.15 is a dimensionless constant. cs(ij) = (cs(i) + cs(j))/293

is the average speed of the sound. The 0.01h2 term in Equation 1 is included94

to keep the denominator non-zero. Πij is the artificial viscosity employed solely95

when shock wave phenomena are going to be treated, which is presented in96

detail in [44, 27].97
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The second and third terms on the right hand side of Equation 2 were discre-98

tised such as proposed by [44] [45] to handle discontinuities. afsi represents the99

acceleration coming from forces due to the soil particles. FfNi = FfNi(n) + FfNi(τ) is100

the net exerted force on the fluid particle by DEM objects, which is explained101

below Equation 19. The pressure is computed explicitly by the equation of state102

proposed by [46]103

pi = c2s (ρi − ρ0) (3)

where cs is the speed of sound; the subscript 0 denotes the initial state of104

density.105

The smooth kernel implemented in this work is the cubic spline [47], defined106

as107

W (rij , h) =


αd
(
1− 3

2q
2 + 3

4q
3
)
, 0 ≤ q ≤ 1

αd
1
4 (2− q)3, 1 ≤ q ≤ 2

0, q > 2

(4)

where αd is 7/(478πh2) and 1/(120πh3) for two and three dimensions, for108

the unity requirement; q = rij/h = |xi − xj |/h, is the relative distance between109

two points and h is the smoothing length. The compact support domain (or110

influence radius) of this kernel is 3.111

2.2. SPH for soil112

The mass conservation of soil is the same as Equation 1 without dissipative113

term, whereas the conservation of momentum is described, such as:114

Momentum equation115

Dui
Dt

= g−
n∑
j=1

mj

(
σ

′αβ
i

ρ2i
+
σ

′αβ
j

ρ2j
+Rαβij f

n
ij + Πijδ

αβ

)
∇iW (rij , h)

+ asfi +
FsNi
mi

(5)
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where σ
′αβ
i is the effective stress tensor, Rαβij is the artificial stress that is116

added to the components of the stress tensor which were in tension and fnij is a117

suitable function which increases as the separation decreases [48, 27]. Πij is an118

artificial viscosity and δαβ is the Kronecker delta.119

asfi represents the acceleration coming from forces due to the fluid particles.120

FsNi = FsNi(n) +FsNi(τ) is the net exerted force on the soil particle by DEM objects121

as shown by Equation 25. If the interaction does not involves a DEM object122

FNsi = 0.123

The constitutive model that describes the stresses produced by the interac-124

tion of soil particles is an elastic-perfectly plastic model in addition to a failure125

criterion of Drucker–Prager implemented as described in [23, 28]. The consti-126

tutive equation can be written as follows,127

dσαβ

dt
= ω̇αγσβγ + σγβω̇αγ + 2Gėαβ +Kε̇γγδαβ − λ̇

[
9K sinψδαβ +

G√
J2
sαβ
]

(6)

where ω̇αγ , ε̇γγ and ėαβ rotation rate tensors, volumetric and deviatoric128

strain rates, respectively. δαβ is Kronecker’s delta, δαβ = 1 if α = β and129

δαβ = 0 if α 6= β. K, G and ψ denote the bulk modulus, shear modulus and130

the dilatancy angle, respectively. λ̇ is the rate of the plastic multiplier, λ, which131

depend on the state of stress and load history, and is defined as following,132

λ̇ =
3Kαcε̇

γγ + G√
J2
ε̇αβsαβ

27αcK sinψ +G
(7)

where ε̇αβ and sαβ denotes the total strain rate and the deviatoric stress133

tensor. J2 and αc are the second invariant of the deviatoric stress tensor and a134

parameter from Drucker–Prager criterion. For further details, see [23, 28].135

2.3. Fluid-soil SPH particle interaction136

Equations 8 and 9 are the expressions employed to compute the interaction137

forces between the two SPH phases, fluid and soil. The interaction forces for138

the fluid and soil, respectively, are [49, 50]:139
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afsi =

n∑
j=1

ms
fseepage

ρfρs
W (rfs, h) (8)

asfi =

n∑
j=1

mf
fseepage

ρfρs
W (rfs, h)−

n∑
j=1

mf
pf
ρfρs

∇iW (rsf , h) (9)

The subindex f and s denote fluid and soil particle, respectively. The second140

term in Equation 9 represents the pore fluid pressure exerted on soil particles.141

fseepage is the seepage force based on Darcy’s law, which is defined as follows142

fseepage =
µ

k
(uf − us) (10)

where k = khµ/ρfg is the intrinsic permeability, kh is the Darcy hydraulic143

conductivity (unit, L/T), µ and ρf are the fluid viscosity and density, respec-144

tively. Dimensionally, k is an area (L2) [51, p. 89]. By using a laboratory-scale145

series of experiments, [27, 28, 52, 53] have demonstrated that the physics imple-146

mented in this work for the coupling of soil-water interaction forces can produce147

satisfying agreements with experimental data. Because of this validations, the148

authors will focus on the validation with DEM in this paper.149

3. DEM150

DEM was proposed to represent granular assemblies that are treated as151

distinct objects by definition [33], where an interaction law among the particles152

is defined. Sphero-polyhedra approach of DEM is implemented in this work,153

which characteristic is given by a sphere radius, henceforth DEM halo, defined154

in Section 4 and widely described in [54]. The momentum equation of the DEM155

objects is given by the second Newton’s law, thus;156

mk
Duk
Dt

= mkg +

n∑
i=1

FNpi (11)

where m is the mass, u is the velocity, g the gravity and FNpi = FNpi(n) +FNpi(τ)157

is the exerted force on the DEM element by a SPH particle i of any SPH phase158
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p (fluid or soil). Respectively, FNpi(n) and FNpi(τ) are the normal and tangential159

force that are defined in Section 4.160

4. Coupled SPH-DEM161

As mentioned above, any DEM particle (sphere, segment (2D) and plane)162

is treated with the Sphero-polyhedra approach. One single DEM particle will163

represent the DEM object, and there are not other SPH particles to represent164

or discretise the DEM objects. All DEM particles have a halo to avoid any165

“penetration” between SPH and DEM. Before starting any computation be-166

tween the two methods, it is necessary to verify if the DEM object is inside the167

range radius (i.e., the compact support domain κh) of the SPH particle in the168

matter. The main idea of this interaction approach is that the algorithm seeks169

the closest contact point between a DEM particle (sphere, segment or plane)170

and the SPH particle in concern. When the DEM particle is a segment, as the171

SPH particle (blue particle) is located, the virtual SPH particle (purple particle)172

will be placed based on the minimum distance (Figure 2b). This part of the173

algorithm is detailed explain in [38]. If the object is a sphere, a virtual SPH174

particle will be placed at the nearest point on the surface of the sphere (Figure175

2a). Such virtual SPH particle will be placed as long as SPH particle is close176

enough to the DEM particle. Then, a point on the surface of DEM sphere xs177

is found by using the following expression,178
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x

y

Xdem

Xsph

nXs
r

SPH compact
support

DEM halo

x

y

Xdem

Xsph

n
Xs

SPH compact
support

DEM halo

(a) (b)

Figure 2: Coupling SPH-DEM scheme. (a) DEM sphere interacting with SPH particles. (b)

DEM segments or planes interacting with SPH particles. Blue particle represent the SPH

particle, the purple particle is a virtual particle, and the circular and flat objects are DEM

particles, whose positions are xsph,xs, and xdem, respectively.

xs = xdem + rn (12)

Thus, xs gives the position of the virtual SPH particle (purple particle in179

Figure 2) to compute the interaction between SPH real particle (blue particle180

in Figure 2) and the surface of the DEM particle. r is the radius of the sphere181

and n = (xsph − xdem)/|xsph − xdem| is the unit normal vector, xsph is the182

position of the SPH particle and xdem is the centre of the DEM object. Then,183

the distance between the real and virtual particle is given by184

d = |xsph − xs| (13)

Finally, the overlapping distance δ between the SPH particle and the DEM185

halo is computed as follows (Figure 2),186

δ = ε− d (14)

where ε is the thickness of the halo. In this study, it has been verified that a187

value of the half of the initial SPH particle distribution (i.e., ε = ∆x/2) seems188

to be appropriate.189
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When the distance between the SPH particle and the DEM object surface190

is lower than the compact support domain (i.e., d < κh). then, the tangential191

force for fluid-DEM interaction will be computed as shown in Section 4.1. On192

the other hand, if the overlapping distance between the SPH particle and the193

DEM halo is greater than zero (i.e., δ > 0), then the tangential force for the194

soil-DEM interaction can be computed as shown in Section 4.2.195

In contrast, the normal force is computed indistinctly of the involved phase196

(soil or water) by assuming an elastic interaction defined as197

FNpi(n) = Knδn (15)

where Kn and n are the normal stiffness coefficient and the normal unit198

vector. The value of the normal stiffness is computed as Kn = 0.1mmin/∆t
2,199

being mmin the minimum value of the mass over all the particles inside the200

domain either SPH or DEM particles, and ∆t is the computational time–step.201

The equation employed to compute the normal stiffness is based on the oscilla-202

tion period of a single degree of freedom, as explained in [55]. The time–step is203

selected as the minimum required to keep the stability of SPH particles, either204

fluid or soil. Besides, an adaptative time–step is employed as detailed presented205

by [28]. The normal force is dependent on the allowed penetration of the SPH206

particle into the DEM halo. Thus, pressure or normal stresses are not employed207

in such purpose. The total force exerted on DEM objects is the summation of208

the force coming from all SPH particles that interact with it as shown in Equa-209

tion 11. This definition of the normal force ensures that the SPH particle does210

not break through the DEM particles and the normal stiffness expression guar-211

antees the stability of the solution [56, 31, 57]. Now, let us define the relative212

velocity between the SPH particle and DEM object such as,213

urel = usph − udem − ωdem × (xs − xdem) (16)

where ωdem is the angular velocity of the DEM object, xdem is the position214

of the centre of the DEM particle and xs is point on the surface of the DEM215

11



object (virtual SPH particle) (Figure 2). After the previous calculations, the216

following steps depend on what SPH material (fluid or soil) is interacting with217

the DEM object as it will be explained below.218

4.1. Fluid-solid interaction force219

The interaction term between the SPH fluid particle and DEM is defined220

by an extra viscous term aτ (Equation 17) with the same form as appear in221

Equation 2.222

aτ =
1

ρi
∇ · (µi∇ui) =

4mi

3hD
(2µi)

(2ρi)
2

urel
d

∇iW (d, h)

W (0, h)
(17)

The expression 2ρi is because the density of the virtual particle equals the223

density of the real SPH particle i, and the same principle is employed with the224

viscosity µi. d is the distance between the real and virtual SPH particle. The225

additional term that multiplies Equation 17 might be written separately as226

2

3hD
1

W (0, h)
(18)

where D is the dimensionality of the problem. Since one single virtual SPH227

particle is “created” to compute the viscous interaction between SPH and DEM228

particles, deficiencies in the calculation of the viscous force might appear. Hence,229

Equation 18 is employed to compensate such deficiency, which corresponds to230

the readjusted normalising constant in a similar way as suggested by [30].231

Then, the total force exerted from the DEM object to the SPH particle is232

described as follows;233

FfNi = FfNi(n) +miaτ (19)

where the normal force FfNi(n) is computed as shown in Equation 15 and the234

second term on the right hand is the tangential force for fluid-DEM interaction235

FfNi(τ) = miaτ . Equation 19 shows the net force exerted on the SPH particle by236

a DEM element.237

12



Since the third Newton’s law governs the interaction force, Equation 20238

shows the net force exerted on the surface of a DEM object.239

FNfi = −FfNi(n) −miaτ (20)

By using the net force, it is possible to obtain torque exerted on the surface240

of the DEM particle as follows.241

T = FNfi × (xs − xdem) (21)

Once all the torques are calculated, the Euler equations for the angular242

momentum is integrated using the Leap-Frog algorithm as described in [58, 59].243

4.2. Soil-solid interaction force244

When the soil particle is interacting with a DEM object, the normal force245

FsNi(n) will be computed in the same when the interaction is fluid-DEM, Equation246

15. Whereas the frictional force depends on the relative velocity and the friction247

coefficient. Thus, the tangential velocity is defined as follows [31],248

uτ = urel − (urel · n)n (22)

The tangential component of the contact force acting on soil particle i can249

be computed using the following steps,250

δτ =δτ + ∆tuτ (23)

where ∆t is the time-step and δτ the distance on which the SPH particle251

and the DEM particle are suffering tangential contact. The rectification of the252

tangential distance is given as shown by Equation 24.253

δ∗τ =


µφ|Fn|
Kn

nτ , if |δτ | > µφ|Fn|/Kn

δτ , otherwise

(24)
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where µφ is the frictional coefficient between soil and the surface of the254

structure, and nτ = δτ/|δτ | when |δτ | > 0 to avoid division by zero. The net255

force acting on the soil particle i is given by Equation 25.256

FsNi = FsNi(n) −Knδ
∗
τ (25)

The normal force FsNi(n) is computed as shown in Equation 15 and the second257

term on the right hand is the tangential force for soil-DEM interaction FsNi(τ) =258

Knδ
∗
τ . The net force exerted on the DEM object satisfies the third Newton’s259

law. Thus,260

FNsi = −FsNi(n) +Knδ
∗
τ (26)

Also, the torque is computed by using the net force as below,261

T = FNsi × (xs − xdem) (27)

Once all the torques are calculated, the Euler equations for the angular262

momentum is integrated using the Leap-Frog algorithm as described in [58, 59].263

SPH is well known to suffer over volumetric deformation in any phase, fluids264

and solids, even in hydro or geostatic conditions [60]. In the present work, such265

an issue was also found through the free surface cases. However, such deforma-266

tion seems not to affect the SPH-DEM coupling directly since the interaction267

forces are defined in term of the mass, which is exactly preserved unlike density268

and consequently the volume. This can be noticed specially in soil mechanics269

modelling interacting with the DEM particles (Equations 25 and 26).270

5. Validation cases271

5.1. Poiseuille flow272

A simple case of Poiseuille flow was carried out to validate the proposed273

approach. A key component of the SPH-DEM coupling is the force exerted on274

DEM particles by SPH given by Equations 20 and 26. These equations are used275
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to calculate the force exerted on DEM particles and compare them with the276

analytical solutions. For this case, the fixed boundaries of Poiseuille flow are277

represented by flat DEM particles. The Poiseuille flow is given between two278

stationary parallel infinite plates (herein simulated by DEM fixed particles) at279

y = 0 and y = H (Figure 3). A constant acceleration a drives the fluid when280

t > 0 s under a laminar regime. The main assumptions to describe this process281

is that the fluid is Newtonian, and the boundary conditions are non-slip. The282

series solution for the transient behaviour is by the Equation 28 [44].283

Fixed DEM plates

SPH particles

Periodic BC

Figure 3: Sketch of SPH-DEM coupling for Poiseuille problem.

u(y, t) =
a

2ν
y(H − y)−

∞∑
n=0

4aH2

νπ3(2n+ 1)3
sin
(πy
H

(2n+ 1)
)

· exp

(
−t (2n+ 1)2π2ν

H2

)
(28)

where u is the velocity in x direction, ν = ρ/µ is the kinematic viscosity, ρ284

is the density and µ the viscosity. When t → ∞, the flow reach the stationary285

condition that is described by Equation 29.286

u(y, t→∞) =
a

2ν
y(H − y) (29)

On the other hand, the force over a layer of fluid or the boundaries can be287

described by the Newton viscosity law as shown by Equation 30.288

Fx(y, t→∞) = τA = µ
∂u

∂y
(l × 1) (30)
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where τ is the main the shear stress, and A = l×1 is the area of the applied289

force, been l the length in x direction by unity in the z direction. By replacing290

Equation 28 into Equation 30 and after derivation, it is possible to obtain291

Fx(y, t) = ρa

(
H

2
− y
)
l −

∞∑
n=0

4ρaH2

π3(2n+ 1)3

( π
H

(2n+ 1)
)

cos
(πy
H

(2n+ 1)
)

· exp

(
−t (2n+ 1)2π2ν

H2

)
l (31)

Equation 31 describes the force as a function of height and time. The force292

at the stationary state is described by Equation 32293

Fx(y, t→∞) = ρa

(
H

2
− y
)
l (32)

The case is solved by using the following parameters as a = 10−4 m/s2,294

y = [0, H] m, H = 10−1 m, l = 10−1 m, ρ = 1000 kg/m3, µ = 10−1 Pa-s,295

ν = 10−4 m2/s, t = [0, t → ∞] s. The Reynolds number is Re = 1.3, which296

belongs to the laminar regime. No dissipation terms were needed in this case.297

Figure 4 compares the analytical solution to the numerical solution given by298

two methods in the boundary, SPH and DEM. The coupled SPH-DEM produce299

results as good as the pure SPH method.300
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Figure 4: Vertical velocity profile comparison to the analytical solution (Equation 28). (a)

SPH velocity obtain by the use of SPH boundary particles and (b) SPH velocity obtain by

the use of DEM plates at the boundaries.

Figure 5 compare the force obtained by the Equation 31 to the force obtain301

numerically on the DEM plates computed as shown in Equation 20. Figure 6302

shows the Euclidean norm (Equation 33) of the error as a function of the time303

produced in the velocity profile when using SPH or DEM boundary conditions.304

It is possible to see that there is no difference between the two treatments. Also,305

Figure 7 shows the Euclidean norm of the error generated by the computation306

of the force on the DEM plates solely as a function of time. Although the307

oscillations are noticeable, the order of magnitude for this specific example is308

very low O(10−6).309

||e||2 =

√√√√ n∑
i=1

(ua − un)2i (33)

where ua and un are the velocity in x direction obtain by the analytical and310

numerical solution, respectively.311
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Figure 5: Comparison of the force profile (solid line) given by the analytical solution (Equation

31) to the numerical solution given by Equation 20 (blue triangles).
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Figure 6: Euclidean norm of the error

of the velocity profile as a function of

time for both treatments at the bound-

ary conditions, SPH dummy particles

and DEM plates.
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Figure 7: Euclidean norm of the error

of the force obtained on the DEM plates

as a function of the time.

5.2. Square array of cylinders immersed in fluid312

The goal now is to test the coupling law for SPH fluid particles with curved313

DEM surfaces. Hence, a flow given through an array of cylinders is implemented,314

which is typically employed to represent flow in porous media. The flow is315
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assumed to be in a steady motion driven by an acceleration a, and the fluid is316

incompressible. The dimensionless force exerted on a periodic square array of317

cylinders per unit length is given as [61, p. 167],318

L

L

DEM particle

SPH particles

a

Figure 8: Square array of cylinders (DEM particles) immersed in a fluid flow (SPH particles).

F

µŪ
=

4π

k∗(c)
(34)

where Ū is the seepage velocity in x direction, and k∗(c) is the dimen-319

sionless permeability which is a function of the solid concentration defined as320

c = πr2/L2. The simulation was performed for several solid concentration,321

which means that the length L was kept as constant, whereas, the radius r was322

changed as can be observed in Figure 11.323

The solution is given in two dimensions by discretising the fluid with SPH324

whereas the cylinder is represented by a DEM sphere as shown in Figure 8.325

The boundary conditions are imposed as periodic. The case is solved under the326

following conditions. The flow is driven by a body force a = 2 × 10−5 m/s2327

in x direction. x = y = [0, L], L = 2 × 10−1 m, ρ = 1000 kg/m3, µ = 10−1328

Pa-s, ν = 10−4 m2/s, t = [0, t→∞] s, and the number of nodes was 100× 100.329

Taking the scale of the DEM particle inside the fluid, the Reynolds number is330

between Re ≈ 0.0023 for a high solid concentration, and Re ≈ 0.1224 for the low331

solid concentration, which belongs to the laminar regime. The artificial viscosity332

term was used for this case, where the values for the dissipation parameters were333

α = β = 0.01. The stability of this case was ensured by the following equations334

Cs =

√
arρ

∆ρ
; ∆t = CFL

h

Cs
(35)

19



where, Cs is the speed of the sound, ∆ρ = 3% is the allowed variation in335

density and CFL = 0.005 is the stability condition. This values allows to obtain336

a smooth field pressure when δ-SPH is used (Figure 9d).337

Figure 9 shows the solution of the problem postulated in this section. Figures338

9a and 9b present the velocity and pressure field, respectively, with no density339

dissipation. Figure 9c and 9d give the velocity and pressure field, respectively,340

employing δ-SPH. It is notorious the improvement of the solution given in the341

pressure field when δ-SPH is used, whereas there is not significant affection in342

the velocity field. Also, Figure 10 compares the solution given by our coupled343

SPH-DEM with δ-SPH to a FEM solution presented in [44]. The parameters344

and dimensions were changed for this very specific case as is described in [44].345

The coupled methods show suitable results with respect to the FEM solution.346
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(a) (b)

(c) (d)

Figure 9: (a) Velocity distribution (u, m/s) and (b) pressure field (p− pmean, Pa) of the flow

with a immerse DEM sphere when the boundary conditions are setted up as periodic and the

solid concentration c = 0.125.
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Figure 10: Comparison of pressure given by the SPH-DEM to the solution given by FEM

presented in [44].

Figure 11 compares the dimensionless permeability given by the numerical347

solution computed using SPH-DEM coupled method to its analytical solution.348

It is necessary to calculate the coupling force through Equations 19 and 20349

to replace it in the Equation 34 which allows to obtain the dimensionless per-350

meability. The analytical values were taken from the tabulation presented in351

[61, p. 169][62]. Figure 11 shows the permeability computed with and without352

the dissipation term for the density (i.e., δ-SPH). Although, δ-SPH produce a353

nearly no noisy pressure field as shown in Figure 9, the dimensionless perme-354

ability present a higher overestimation (Figure 11). In spite of the differences,355

the results obtained using SPH-DEM are in close agreement with the analytical356

ones.357
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Figure 11: Comparison of the dimensionless permeability to the analytical solution taken from

[62, 61].

5.3. Granular flow impact on immovable wall358

The tests of the coupled SPH-DEM have shown acceptable results for steady-359

state water flows. However, it is also important to test the method with discon-360

tinuous processes such as sharp wavefronts and its impact on immovable walls.361

Furthermore, it is also needed to validate the SPH soil particles interacting with362

DEM objects as it was performed with SPH fluid coupling. Therefore, an ex-363

periment of a granular flow developed by [63] was attempted to be reproduced364

using our coupled model. The experiment was generated using 50 kg Toyoura365

sand with a bulk density of 1379 kg/m3. The mean grain diameter is about366

0.25 mm, and the mean porosity was 0.435 as taken by [64]. The parameters367

to reproduce the experiment numerically are summarised in Table 1. The sand368

was contained in a box which gate was suddenly released. The length and width369

of the flume were 1.8 m and 0.3 m, respectively. An immovable wall was located370

at a distance of 1.8 m, which was able to measure the impact force. The basal371

surface of the channel was coated with sand to increase friction. The experiment372

was developed for different inclination angles 45◦, 50◦, 55◦, 60◦ and 65◦ [63].373
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Table 1: Parameter to reproduce the experiment of the impact force.

Parameter Units Value

Bulk density, ρs kg/m3 1379

Friction angle, φ ◦ 26

Dilation angle, ψ ◦ 0

Young modulus, E MPa 10

Cohesion, c kPa 0

Poisson ratio, ν 0.3

Porosity, n 0.435

Gravity, g m/s2 9.81

Bed friction coefficient, µφ tan 26◦

The case was simulated in 3D by discretising the space with SPH particles374

to represent the sand, and DEM planes to set up de boundary conditions. The375

initial condition has the following dimensions 0.5 × 0.3 × 0.3 m, length, width,376

and high, respectively, as shown in Figure 12. The spacing among the SPH377

points was ∆x = ∆y = ∆z = 0.0125 m, for a total of 20631 SPH particles.378

Also, an artificial viscosity term was used for this case, where the values for379

the dissipation parameters were α = β = 1.0. A good fitting was found by380

employing this friction angle as well as the dissipation parameters as indicated381

by [26, 25] for granular flows.382
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Figure 12: Initial condition of the granular material inside the flume. The gray and black

planes are DEM objects and the brown box is composed of SPH particles.

Figure 13 shows the longitudinal profile of the mass going down a flume with383

a slope angle θ = 45◦ at six time-steps. The colour map shows the magnitude of384

the velocity. The front of the descending mass has the highest velocity, about 3.5385

m/s, similar to the results obtained by [63] whereas the tail has a low velocity.386

Also, it is possible to see when the mass starts to be accumulated once it reaches387

the wall and how the flow over-tops the wall as describe by [63].388

t = 0 s

t = 0.8 s

t = 1.6 s

t = 0.4 s

t = 1.2 s

t = 2.0 s

Figure 13: Lateral view of the granular flow with a slope angle θ = 45◦. The colour map

indicates the norm of the velocity vector |u| of the SPH particles.

Figure 14 compares the measured impact force in the experiment given by389
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[63] as a function of the time to the 3D numerical simulation generated by390

the coupled SPH-DEM method when the inclination angle θ = 45◦. Thus,391

it is possible to validate the coupling force presented in Equations 26 and 26392

when wave fronts of soil SPH particles impact a rigid wall. The experiment and393

numerical results match within an acceptable tolerance. The “post-peak” values394

are nearly the same in both situations despite the “peak force” is overestimated.395

Also, a slight advance on the arrival of the mass to the wall can be noticed in396

Figures 13 and 14.397
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Figure 14: Comparison of the impact force obtain from the experiment generated by [63], and

the SPH-DEM simulation.

The Figure 15 shows the “peak force” measured in experiments performed by398

[63], as well as, the numerical solution obtained by the coupled SPH-DEM and399

[65]. The curves and the “peak force” is consistent with the experimental results400

for an inclination angle of 45◦. However the “peak force” are overestimated in401

the remainder of the angles.402
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Figure 15: Comparison of the impact force obtain from the experiment generated by [63], the

numerical results from [65], and the solution provided by the coupled SPH-DEM.

This granular flow has been reproduced by several authors to test other403

approximations. Table 2 shows the main characteristics of the SPH models404

presented in [21], [65] and the present work to solve the impact force problem.405

Each solution employed a different constitutive model, whereas none of the other406

authors has employed DEM boundary conditions. Despite all the differences our407

model produced closer results to [65] than [21] as can be noticed in Figure 15.408

Table 2: The main differences of SPH models employed to solve the impact force problem.

Author EOS Constitutive equation BC

[21] Weakly-compressible Bingham model SPH

[65] Incompressible Mohr-Coulomb SPH

SPH-DEM Weakly-compressible Druker-Praguer DEM

EOS: equation of state, BC: boundary condition.

The small differences in width between the flume and the container given in409

the experiment set up might be the cause of the impact force overestimation,410

such as suggested by [65] even when the simulation was performed in 3D. Also,411

the bulk density, friction angles and artificial viscosity parameters significantly412

contribute to obtaining an appropriate and less noisy impact force estimation.413
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Despite this, it is the author’s opinion that the obtained match validates the414

proposed coupling scheme.415

5.4. Real scale dry landslide416

Furthermore, from the author’s experience, traditional dummy SPH parti-417

cles for the boundary conditions ([47, 66]) added to the constitutive model can418

influence the run-out distance of long-distance travel landslides. Hence, it is419

crucial to test the coupled method using larger-scale problems such a the Yang-420

baodi landslide that occurred in Southern China in 2002 [67]. The simulation of421

the Yangbaodi landslide is presented by [67] in 2D, employing a scheme called422

Particle Finite Element Method (PFEM). The reproduction 2D case denotes423

that a plane strain was assumed, which imply that the strain in the third di-424

rection can be neglected in comparison with the horizontal and vertical ones.425

Also, [68] presents a 2D simulation of the same event employing DEM par-426

ticles solely. The previously mentioned works presented the simulation in dry427

conditions, unlike the real event that was triggered by accumulated rainfall. Cal-428

ibration in bed friction angle and friction coefficient were employed in PFEM429

and DEM, respectively, to compensate the pore fluid pressure lack and obtain430

the observed run-out distance in the field. The same dry condition with the431

continuum approach is employed in this validation case in order to test the pure432

bed frictional SPH-DEM coupling in large-scale problems based on the reference433

solutions given by [67, 68].434

Hence, the simulation was executed by employing SPH particles to represent435

the dry soil, whereas the boundary conditions are set up as DEM plates 2b. This436

example allows to validate the coupling force defined in Equations 26 and 26 in437

natural scale environments, where larger amount of energy and higher velocities438

are occurring during the mass movement.439

Figure 16 shows the initial configuration of the sliding mass, topography and440

the maximum run-out distance registered from the real case. The thickness of441

the soil is between 3 and 8 m, and the slope angle about 20◦ - 25◦. The registered442

length and thickness of the deposit were 140 m and 1-5 m, respectively.443
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Figure 16: Initial configuration of the Yangbaodi landslide. Three tracked points (green points

A, B and C).

The sliding mass was discretised by using a ∆x = ∆y = 0.38 m with a total444

of 3496 SPH particles akin to [67]. The boundary conditions were set up as445

DEM segments with a friction coefficient of µφ = tan 10◦. The final time of446

the simulation was 30 s. The imposed parameters for the dry simulation of the447

Yangbaodi landslide were taken from [67, 68] and, are summarised in Table 3.448

Figure 17 shows the mass descending by the slope at 6 time-steps. The colour449

map shows the magnitude of the velocity of each SPH particle.450

Table 3: Parameter to reproduce the Yangbaodi landslide in dry conditions. Taken from

[67, 68]

Parameter Units Value

Soil density, ρs kg/m3 1133.98

Friction angle, φ ◦ 28

Dilation angle, ψ ◦ 0

Young modulus, E MPa 10

Cohesion, c kPa 0

Poisson ratio, ν 0.3

Porosity, n 0.428

Gravity, g m/s2 9.81

Bed friction coefficient, µφ tan 10◦
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Figure 17: Norm of the velocity vector |u| of SPH particles going down the slope.

Figure 18a and 18b compare the SPH-DEM coupled method to the solution451

produced by the Particle Finite Element Method (PFEM) presented in [67].452

The comparison of the coupled SPH-DEM is given to the PFEM since both453

simulations were performed with the continuum approach. Moreover, the solu-454

tion given by PFEM was already validated with a more standard method, pure455

DEM, showing similar results [67]. The velocity in x and y direction for each456

tracker point A, B and C are compared with the two above mentioned numer-457

ical methods in Figures 18a and 18b, respectively. The velocity that is given458

by the PFEM (solid green line) and SPH-DEM (dashed blue line) have similar459

behaviour, and it is especially remarkable on the abrupt changes. The informa-460

tion of tracker point A, B and C is organised on the first, second and third row,461

respectively. The dashed red lines show the path of the tracked points. Also, the462

final deposition is represented by the dotted grey line and solid fuchsia line given463

by the PFEM and SPH-DEM, respectively. Some negligible differences can be464

appreciable in the velocity of the tracked points generated by both methods, as465

shown in Figure 18.466
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On the one hand, the results given by the coupled SPH-DEM are satisfactory467

despite its overestimation in the run-out distance and the deposit shape respect468

to the PFEM (Figure 17). This observation is caused by the overpredicted469

volumetric deformation that is typical in the SPH method that can happen470

even in static conditions as can be observed in [60].471
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Figure 18: Comparison between SPH and PFEM. The solid green and dashed blue line are

the velocity of the tracked point, A, B and C given by PFEM and SPH, respectively. The

left and right column give the velocity in the x and y direction, respectively. The dashed red

line represents the path of the tracked points. The solid black line represents the topography.

The dotted grey and solid fuchsia lines are the final deposit shape obtained by PFEM and

SPH, respectively.

6. Debris flow472

After the validation of the SPH-DEM coupling either with fluid or soil by473

through four previous cases, the author desires to conclude this manuscript with474

a potential application of it for debris flow. Before any numerical description,475

it is crucial to define the limit of each phase to simulate the debris flow case.476
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The limits in the model will be established mainly based on sediment size,477

and it will be split into three “phases”. First, as suggested by [10], particles478

with a silt-clay size can be taken as a part of the fluid since viscous forces479

dominate grain motion. Then, if the amount of such fine particles is enough480

to change the density and viscosity of the fluid phase, they must be considered481

in the Newtonian model. If the mineral composition and quantity of the fine482

particles are such that the viscosity becomes non-linear, then, another non-483

Newtonian constitutive model must be implemented for the fluid phase solely484

(e.g., exponential law or Herschel-Buckley, see [69]). Second, if the diameter485

is larger than silt size, as long as the grains keep in the frictional state, then486

another constitutive model might be implemented to describe the behaviour of487

the soil phase. Thus, an elastic perfectly-plastic constitutive model with Druker–488

Praguer failure criteria is employed in this work since it had demonstrated489

appropriated results in large deformation cases [23, 70, 26]. Third, it has been490

noticed that debris flows can drag big boulders which might have a diameter491

comparable to the flow depth and can reach 11 m in diameter [71, 10, 9]. The492

quantity and the size of such boulders in debris flows might be considered as493

singular values because the size is out of the characteristic diameters. Thus,494

large boulders are not included as part of the soil matrix that is represented495

through the continuum approach in this paper. Therefore, big boulders whose496

diameter is about the flow depth are represented as a “third phase” using DEM497

spheres.498

Hence, a hypothetical example of debris flow is implemented to have a pro-499

jection of its behaviour when all the materials (water, soil, and boulders) are500

combined at the same time. Thus, it is possible to test the coupling forces501

among all the materials in one single case, given by Equations 15, 19, 20, 25,502

26. The configuration of this simulation is based on the case presented in section503

5.4. However, several changes were performed in the initial configuration in such504

a way that it is not the intension of this section to reproduce the Yangbaodi505

landslide.506

The topography is the same, plus two more DEM plates were added. A507
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horizontal one on the left-hand side to elongate the topography toward the back508

that will serve as an inflow condition of the water (Figure 19). Three boulders509

(DEM spheres) were placed into the fluid-soil mixture, as shown in Figure 19.510

The same shape of the initial profile in the dry case was employed but 3 m511

deeper in thickness, as shown in Figure 19. The soil was assumed to be 100512

% saturated; so that the same shape of the initial condition for the soil was513

employed for water. The fluid and soil mass were discretised using a distance514

among points of ∆x = ∆y = 0.5 m, with a total of 7662 SPH points at the515

beginning and 8216 SPH particles at the end due to the inlet flow. The final516

time of the simulation was 30 s.517
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Figure 19: Initial configuration of the fluid and soil SPH particles, and DEM boulders (fuchsia

points). Three soil SPH particles are tracked during the movement (green points A, B and

C).

A Gumbel shaped function was employed to configure the velocity of the inlet518

flow during the half of the simulation whereas the water level was kept constant,519

5 m (see Equation 36 and Figure 20). Thus, it was possible to obtain a variable520

discharge upstream as might occur in dam-break or overtopping problems which521

are common in debris flows.522

u =
aG
βG

exp

(
− t− µG

βG

)
exp

[
− exp

(
− t− µG

βG

)]
(36)

where aG = 35, βG = 2 and µG = 3 are the parameter of the Gumbel523

function.524
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Figure 20: Hydrograph of the inlet flow.

Table 4: Debris flow parameters.

Parameter Units Value

Soil density, ρs kg/m3 2000

Friction angle, φ ◦ 28

Dilation angle, ψ ◦ 0

Young modulus, E MPa 10

Cohesion, c kPa 10

Intrinsic permeability, kc m2 1× 10−8

Poisson ratio, ν 0.3

Porosity, n 0.428

Gravity, g m/s2 9.81

Boulder density, ρB kg/m3 2200

Boulder radius, RB m 2

Boulder friction coefficient, µφ tan 18◦

Bed friction coefficient, µφ tan 18◦

Fluid density, ρf kg/m3 2200

Fluid viscosity, µ Pa·s 1 ×10−3

Figure 21 shows the soil phase as well as the boulders descending by the525

slope at six time-steps. The colour map shows the magnitude of the velocity526

of each soil SPH particle. Figure 22 shows the fluid phase and the boulders527
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descending by the slope at the same six time-steps as in the soil phase. The528

colour map shows the magnitude of the velocity of each fluid SPH particle. It529

is possible to see form Figures 21 and 22 that the velocity in both phases are530

similar, and a slight difference can be noticed in the fluid phase mainly caused531

by the inlet flow. The fuchsia points denote the position of each boulder at that532

time step.533
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Figure 21: Norm of the velocity vector |u| of SPH soil particles going down the slope and

boulders (fuchsia points).
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Figure 22: Norm of the velocity vector |u| of SPH fluid particles going down the slope and

boulders (fuchsia points).

Figures 23 and 24 present the colour map of the pore fluid pressure at the534

same six time steps. The most relevant characteristic is that the pore fluid535

pressure is interrupted horizontally by the presence of such big boulders. In536

contrast, the field of the pore fluid pressure seems to be more continuous in the537

x direction, in the absence of such boulders. Because of that, it is possible to538

see higher pore fluid pressure on the left side of the boulders and lower pressure539

on the right side. It is noticeable specially at 10, 15 and 20 s (Figures 23 and540

24).541
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Figure 23: Pore fluid pressure during the displacement of the entire mass and boulders

(fuchsia points).
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Figure 24: Pore fluid pressure during the displacement of the entire mass and boulders

(fuchsia points).

Three trackers points were located precisely in the same position at the542

beginning of the simulation as in the dry landslide case 5.4. Figure 25 compares543

the velocity of the tracked points of the dry landslide to the debris flow with544

and without boulders. The velocity in x and y direction of the debris flow for545

each tracker point A, B and C is compared to the solution generated by the546

coupling SPH-DEM in the dry landslide in Figures 25a and 25b, respectively.547

The information of tracker points A, B and C is organised on by rows. The548

grey hatched area represents the final deposition of the entire fluid-soil mass,549

and the fuchsia points are the boulders. The solid orange line and dotted green550

line represent the velocity of the tracked point, A, B and C given by the debris551

flow, with and without boulders, respectively. The velocity that is given by the552

debris flow with boulders (solid orange line) and debris flow without boulders553

(dotted green line) has a very slight but still notable difference. The boulders554

seem to slow down and reduce the travel distance of the mass a few meters,555

unlike when the mixture does not have big boulders. This behaviour resembles556
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some descriptions given from observations in debris flow, where big boulders557

tend to retain materials on the rear part. Although this is not the proper case558

to study that characteristic due to the short travel distance, it starts to show a559

slow down process caused by the big boulders.560

The aim of this section is not to reproduce the Yangbaodi landslide because561

of the abrupt changes given in the initial conditions. However, it is possible562

to observe in Figure 25 the similar velocities of the trackers points that were563

found changing the friction coefficient of the DEM segments on the topography564

from µφ = tan 10◦ (dry case, Section 5.4) to µφ = tan 18◦ (hypothetical debris565

flow). It shows the importance of the friction coefficient of this kind of events.566

Thus, the debris flow cases (solid orange line and dotted green line) show similar567

behaviour to the dry case (dashed blue line). This similarity is mainly due to568

the vertical restriction generated by the topography (see Figure 25b), whereas569

the velocity in x direction can be more affected by all the changes produced in570

the initial condition.571
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Figure 25: Comparison between dry landslide and debris flow with and without boulders.

The solid orange line and dotted green line represent the velocity of the tracked point, A, B

and C given by the debris flow, with and without boulders, respectively. The dashed blue

line shows the velocity of the tracked point, A, B and C given by the dry landslide produced

with SPH in Section 5.4. The left and right column give the velocity in the x and y direction,

respectively. The grey hatched area is the profile of the final deposit of the fluid-soil mixture

in addition to the boulders (fuchsia points).

On another hand, it is possible to obtain the information from the boulders572

such as their position, velocity and force exerted on them. Also, the potential573

EP and kinetic energy EK that the boulder possess by they self can be computed574

as follows,575

EP (t) =mBgyB = ρB

(
4

3
πR3

B

)
gyB (37)

EK(t) =
1

2
mBu

2
B =

1

2
ρB

(
4

3
πR3

B

)
|u|2B (38)

where mB is the mass of the boulder and |u|B is the magnitude of the576

velocity of the boulder. Figures 26a and 26b show the potential and kinetic577
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energy, respectively. From Figure 26a is evident that the boulders reach constant578

potential energy once they arrive in the flat area, whereas Figure 26b shows when579

the boulders lost all the kinetic energy at 23 s. Also, it is noticeable that the580

signal is noisy. However, it is caused by the dynamic of the process; the boulders581

have a variable velocity during the interaction with the other two phases, fluid582

and soil.583
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Figure 26: Energy versus time of each boulder during the flow. (a) potential energy. (b)

kinetic energy.

Finally, the kinetic energy was checked from a control volume setup at the584

beginning of the horizontal zone (x=193.1 m) since this is the point were the585

mass reach the maximum velocity as can be verified in Figure 25. Any material586

(soil, fluid and boulders) that was crossing the control volume, whose width was587

∆x = 0.5 m, were added to obtain the total kinetic energy measured at that588

time (Figure 27). The equation that describe the total kinetic energy in the589

control volume at each time-step is given by,590

EK(T )(t) =

N∑
i

1

2
mi|u|2i +

1

2
mB |u|2B (39)
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Figure 27: Scheme of the control volume to measure the kinetic energy as a function of time.

where N represents the total amount of SPH particles (soil and water) that591

are crossing the control volume at that specific time-step. The second term on592

the right-hand side will add the kinetic energy of a boulder as long as they are593

crossing the control volume. Figure 28 shows the kinetic energy of the numerical594

solution with boulders (solid black line) and without boulders (dashed blue line)595

into the mixture. The simulation with no boulders is employed as a reference596

case to observe the importance of including big and heavy objects into the597

simulations when required.598

It is noticeable when each boulder is crossing the control volume since the599

kinetic energy is increased in one order of magnitude, which is marked by the600

three peaks on Figure 28. The boulders are decreasing the dissipation rate of the601

kinetic energy while they are moving, which increase the damage potential of602

the flow. The quantitative estimation of the energy in such kind of phenomena603

is essential to consider the damage level of a specific structure or to provide604

data for designing of the retention structures. On the other hand, the average605

behaviour in both cases, which is given by the SPH particles, is practically the606

same.607
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Figure 28: Measurement if the kinetic energy at the distance of x = 193.1 m for the entire

depth of the flow with boulders (black line) and with no boulders (blue line).

The results presented in this section, especially where it is shown the differ-608

ence in the behaviour of debris flow with and without boulders (Figures 23, 24,609

25 and 27), highlight the importance of including all the materials (fluid, soil610

and big boulders) to have a better understanding of dynamic of debris flow. The611

SPH-DEM coupled method provides a promising tool that will help to study612

the interaction of big boulders with the rest of the debris flow mixture, which is613

still poorly understood as pointed out by [9]. Additionally, it might be possible614

to get more accurate data no just to design retention structures but to compute615

the potentially affected areas. Despite the promising benefits, validation for616

such type of phenomena is still required.617

7. Conclusions618

The coupling SPH-DEM produces satisfactory results in all the benchmark619

cases here implemented, which is verified by analytical solutions, experimental620

measurements and field data. Also, the force exerted on the DEM elements is621

obtained straightforwardly; no extra computations are needed.622

The main advantage of the coupling methodology here implemented relies623

on two facts. There is no longer concern that particles can penetrate the wall,624
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as can occur with traditional treatments on the boundary conditions for SPH625

solvers. This method avoids the penetration of the moving SPH particles entirely626

through the boundary conditions. Moreover, the computational effort produced627

to calculate the variables such as velocity, pressure and stresses for particles628

that belong to the boundary conditions is wholly avoided.629

The coupled method can predict the force for both stationary and transient630

cases since the results match with reasonable accuracy the analytical solutions631

and experimental data. The tangential force is the one that has a dominant role632

in differentiating if a DEM object is interacting with fluid or soil SPH particles.633

In contrast, the normal force is treated indistinct of the interacting material.634

The velocity profile produced in the Poiseuille flow is quite the same if SPH or635

DEM boundary conditions are implemented. Also, the force had a low order of636

error O(10−6) regards the analytical solution here presented. Good results were637

also found in the case of a square array of cylinders to obtain the permeability638

and drag force.639

The impact force presented in the experimental dry granular flow is ac-640

ceptable despite the slight overestimation. It was also found that the friction641

angle, the basal friction coefficient and artificial viscosity coefficients make a642

significant contribution to the impact force. Furthermore, the dry landslide643

simulation shows similar behaviour regards other numerical techniques. The644

established tangential force term generates appropriate results demonstrated645

mainly through the velocity of the mass as noticeable in the dry landslide case.646

The projection of this numerical strategy toward debris flows shows con-647

sistent results: velocity, deposit profile and energy show realistic behaviour. A648

significant difference could be noticed when big boulders are crossing the control649

volume as well as the soil and fluid materials, which can contribute to structure650

design of retaining dams for debris flows.651

Some differences in pore fluid pressure field and velocity were found when the652

big boulders are introduced in debris flows, in regards to their absence. However,653

the coupled SPH-DEM still requires validation for such kind of phenomena.654
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