![]() |
MechSys
1.0
Computing library for simulations in continuum and discrete mechanics
|
00001 /************************************************************************ 00002 * MechSys - Open Library for Mechanical Systems * 00003 * Copyright (C) 2005 Dorival M. Pedroso * 00004 * * 00005 * This program is free software: you can redistribute it and/or modify * 00006 * it under the terms of the GNU General Public License as published by * 00007 * the Free Software Foundation, either version 3 of the License, or * 00008 * any later version. * 00009 * * 00010 * This program is distributed in the hope that it will be useful, * 00011 * but WITHOUT ANY WARRANTY; without even the implied warranty of * 00012 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * 00013 * GNU General Public License for more details. * 00014 * * 00015 * You should have received a copy of the GNU General Public License * 00016 * along with this program. If not, see <http://www.gnu.org/licenses/> * 00017 ************************************************************************/ 00018 00019 /* JacobiRot - Copyright (C) 2007 Dorival de Moraes Pedroso */ 00020 00023 #ifndef MPM_JACOBIROT_H 00024 #define MPM_JACOBIROT_H 00025 00026 // STL 00027 #include <cmath> // for sqrt ... 00028 #include <cfloat> // for DBL_EPSILON 00029 00030 // MechSys 00031 #include <mechsys/util/fatal.h> 00032 00033 // Local 00034 #include <mechsys/mpm/defs.h> 00035 00036 namespace MPM { 00037 00038 inline int JacobiRot(STensor2 const & T, double L[3]) 00039 { 00040 const double maxIt = 30; // Max number of iterations 00041 const double tol = DBL_EPSILON*100; // Erro: Tolerance 00042 const double zero = DBL_EPSILON; // Zero 00043 00044 double UT[3]; // Values of the Upper Triangle part of symmetric matrix A 00045 double th; // theta = (Aii-Ajj)/2Aij 00046 double c; // Cossine 00047 double s; // Sine 00048 double cc; // Cossine squared 00049 double ss; // Sine squared 00050 double t; // Tangent 00051 double tmp; // Auxiliar variable 00052 double sumUT; // Sum of upper triangle of abs(A) that measures the error 00053 int it; // Iteration number 00054 double h; // Difference L[i]-L[j] 00055 00056 // Initialize eigenvalues which correnspond to the diagonal part of A 00057 L[0]=T(0); L[1]=T(1); L[2]=T(2); 00058 00059 // Initialize Upper Triangle part of A matrix (array[3]) 00060 UT[0]=T(3)/SQ2; UT[1]=T(4)/SQ2; UT[2]=T(5)/SQ2; 00061 00062 // Iterations 00063 for (it=1; it<=maxIt; ++it) 00064 { 00065 // Check error 00066 sumUT = fabs(UT[0])+fabs(UT[1])+fabs(UT[2]); 00067 if (sumUT<=tol) return it; 00068 00069 // i=0, j=1 ,r=2 (p=3) 00070 h=L[0]-L[1]; 00071 if (fabs(h)<zero) t=1.0; 00072 else 00073 { 00074 th=0.5*h/UT[0]; 00075 t=1.0/(fabs(th)+sqrt(th*th+1.0)); 00076 if (th<0.0) t=-t; 00077 } 00078 c = 1.0/sqrt(1.0+t*t); 00079 s = c*t; 00080 cc = c*c; 00081 ss = s*s; 00082 // Zeroes term UT[0] 00083 tmp = cc*L[0] + 2.0*c*s*UT[0] + ss*L[1]; 00084 L[1] = ss*L[0] - 2.0*c*s*UT[0] + cc*L[1]; 00085 L[0] = tmp; 00086 UT[0] = 0.0; 00087 tmp = c*UT[2] + s*UT[1]; 00088 UT[1] = c*UT[1] - s*UT[2]; 00089 UT[2] = tmp; 00090 00091 // i=1, j=2 ,r=0 (p=4) 00092 h = L[1]-L[2]; 00093 if (fabs(h)<zero) t=1.0; 00094 else 00095 { 00096 th=0.5*h/UT[1]; 00097 t=1.0/(fabs(th)+sqrt(th*th+1.0)); 00098 if (th<0.0) t=-t; 00099 } 00100 c = 1.0/sqrt(1.0+t*t); 00101 s = c*t; 00102 cc = c*c; 00103 ss = s*s; 00104 // Zeroes term UT[1] 00105 tmp = cc*L[1] + 2.0*c*s*UT[1] + ss*L[2]; 00106 L[2] = ss*L[1] - 2.0*c*s*UT[1] + cc*L[2]; 00107 L[1] = tmp; 00108 UT[1] = 0.0; 00109 tmp = c*UT[0] + s*UT[2]; 00110 UT[2] = c*UT[2] - s*UT[0]; 00111 UT[0] = tmp; 00112 00113 // i=0, j=2 ,r=1 (p=5) 00114 h = L[0]-L[2]; 00115 if (fabs(h)<zero) t=1.0; 00116 else 00117 { 00118 th=0.5*h/UT[2]; 00119 t=1.0/(fabs(th)+sqrt(th*th+1.0)); 00120 if (th<0.0) t=-t; 00121 } 00122 c = 1.0/sqrt(1.0+t*t); 00123 s = c*t; 00124 cc = c*c; 00125 ss = s*s; 00126 // Zeroes term UT[2] 00127 tmp = cc*L[0] + 2.0*c*s*UT[2] + ss*L[2]; 00128 L[2] = ss*L[0] - 2.0*c*s*UT[2] + cc*L[2]; 00129 L[0] = tmp; 00130 UT[2] = 0.0; 00131 tmp = c*UT[0] + s*UT[1]; 00132 UT[1] = c*UT[1] - s*UT[0]; 00133 UT[0] = tmp; 00134 } 00135 throw new Fatal("JacobiRot dit not converge for %d iterations",it); 00136 } 00137 00138 inline int JacobiRot (STensor2 const & T, double V0[3], double V1[3], double V2[3], double L[3]) 00139 { 00140 const double maxIt = 30; // Max number of iterations 00141 const double tol = DBL_EPSILON*100; // Erro: Tolerance 00142 const double zero = DBL_EPSILON; // Zero 00143 00144 double UT[3]; // Values of the Upper Triangle part of symmetric matrix A 00145 double th; // theta = (Aii-Ajj)/2Aij 00146 double c; // Cossine 00147 double s; // Sine 00148 double cc; // Cossine squared 00149 double ss; // Sine squared 00150 double t; // Tangent 00151 double tmp; // Auxiliar variable 00152 double TM[3]; // Auxiliar array 00153 double sumUT; // Sum of upper triangle of abs(A) that measures the error 00154 int it; // Iteration number 00155 double h; // Difference L[i]-L[j] 00156 00157 // Initialize eigenvalues which correnspond to the diagonal part of A 00158 L[0]=T(0); L[1]=T(1); L[2]=T(2); 00159 00160 // Initialize Upper Triangle part of A matrix (array[3]) 00161 UT[0]=T(3)/SQ2; UT[1]=T(4)/SQ2; UT[2]=T(5)/SQ2; 00162 00163 // Initialize eigenvectors 00164 V0[0]=1.0; V1[0]=0.0; V2[0]=0.0; 00165 V0[1]=0.0; V1[1]=1.0; V2[1]=0.0; 00166 V0[2]=0.0; V1[2]=0.0; V2[2]=1.0; 00167 00168 // Iterations 00169 for (it=1; it<=maxIt; ++it) 00170 { 00171 // Check error 00172 sumUT = fabs(UT[0])+fabs(UT[1])+fabs(UT[2]); 00173 if (sumUT<=tol) return it; 00174 00175 // i=0, j=1 ,r=2 (p=3) 00176 h=L[0]-L[1]; 00177 if (fabs(h)<zero) t=1.0; 00178 else 00179 { 00180 th=0.5*h/UT[0]; 00181 t=1.0/(fabs(th)+sqrt(th*th+1.0)); 00182 if (th<0.0) t=-t; 00183 } 00184 c = 1.0/sqrt(1.0+t*t); 00185 s = c*t; 00186 cc = c*c; 00187 ss = s*s; 00188 // Zeroes term UT[0] 00189 tmp = cc*L[0] + 2.0*c*s*UT[0] + ss*L[1]; 00190 L[1] = ss*L[0] - 2.0*c*s*UT[0] + cc*L[1]; 00191 L[0] = tmp; 00192 UT[0] = 0.0; 00193 tmp = c*UT[2] + s*UT[1]; 00194 UT[1] = c*UT[1] - s*UT[2]; 00195 UT[2] = tmp; 00196 // Actualize eigenvectors 00197 TM[0] = s*V1[0] + c*V0[0]; 00198 TM[1] = s*V1[1] + c*V0[1]; 00199 TM[2] = s*V1[2] + c*V0[2]; 00200 V1[0] = c*V1[0] - s*V0[0]; 00201 V1[1] = c*V1[1] - s*V0[1]; 00202 V1[2] = c*V1[2] - s*V0[2]; 00203 V0[0] = TM[0]; 00204 V0[1] = TM[1]; 00205 V0[2] = TM[2]; 00206 00207 // i=1, j=2 ,r=0 (p=4) 00208 h = L[1]-L[2]; 00209 if (fabs(h)<zero) t=1.0; 00210 else 00211 { 00212 th=0.5*h/UT[1]; 00213 t=1.0/(fabs(th)+sqrt(th*th+1.0)); 00214 if (th<0.0) t=-t; 00215 } 00216 c = 1.0/sqrt(1.0+t*t); 00217 s = c*t; 00218 cc = c*c; 00219 ss = s*s; 00220 // Zeroes term UT[1] 00221 tmp = cc*L[1] + 2.0*c*s*UT[1] + ss*L[2]; 00222 L[2] = ss*L[1] - 2.0*c*s*UT[1] + cc*L[2]; 00223 L[1] = tmp; 00224 UT[1] = 0.0; 00225 tmp = c*UT[0] + s*UT[2]; 00226 UT[2] = c*UT[2] - s*UT[0]; 00227 UT[0] = tmp; 00228 // Actualize eigenvectors 00229 TM[1] = s*V2[1] + c*V1[1]; 00230 TM[2] = s*V2[2] + c*V1[2]; 00231 TM[0] = s*V2[0] + c*V1[0]; 00232 V2[1] = c*V2[1] - s*V1[1]; 00233 V2[2] = c*V2[2] - s*V1[2]; 00234 V2[0] = c*V2[0] - s*V1[0]; 00235 V1[1] = TM[1]; 00236 V1[2] = TM[2]; 00237 V1[0] = TM[0]; 00238 00239 // i=0, j=2 ,r=1 (p=5) 00240 h = L[0]-L[2]; 00241 if (fabs(h)<zero) t=1.0; 00242 else 00243 { 00244 th=0.5*h/UT[2]; 00245 t=1.0/(fabs(th)+sqrt(th*th+1.0)); 00246 if (th<0.0) t=-t; 00247 } 00248 c = 1.0/sqrt(1.0+t*t); 00249 s = c*t; 00250 cc = c*c; 00251 ss = s*s; 00252 // Zeroes term UT[2] 00253 tmp = cc*L[0] + 2.0*c*s*UT[2] + ss*L[2]; 00254 L[2] = ss*L[0] - 2.0*c*s*UT[2] + cc*L[2]; 00255 L[0] = tmp; 00256 UT[2] = 0.0; 00257 tmp = c*UT[0] + s*UT[1]; 00258 UT[1] = c*UT[1] - s*UT[0]; 00259 UT[0] = tmp; 00260 // Actualize eigenvectors 00261 TM[0] = s*V2[0] + c*V0[0]; 00262 TM[2] = s*V2[2] + c*V0[2]; 00263 TM[1] = s*V2[1] + c*V0[1]; 00264 V2[0] = c*V2[0] - s*V0[0]; 00265 V2[2] = c*V2[2] - s*V0[2]; 00266 V2[1] = c*V2[1] - s*V0[1]; 00267 V0[0] = TM[0]; 00268 V0[2] = TM[2]; 00269 V0[1] = TM[1]; 00270 } 00271 throw new Fatal("JacobiRot dit not converge for %d iterations",it); 00272 } 00273 00274 }; // namespace MPM 00275 00276 #endif // MPM_JACOBIROT_H