
Fluid-structure interactions (FSI) are very common in many natural pro-
cesses and engineering applications. However, modeling FSI with large struc-
tural deformations and turbulence flows under high Reynolds number (Re)
is still a challenging task. Here, we present a hybrid 3D model that combines
the advantages of Lattice Boltzmann Method (LBM) on solving complex
flow problems and the capability of Material Point Method (MPM) on han-
dling large structural deformations. A sharp interface coupling scheme is
presented in details and a LES sub-grid model is adapted for turbulent flows.
The structure solver is validated by comparing with Euler beam theory and
the fluid solver is tested for fluid round circle and cube obstacles under a large
range of Re. The coupled model is validated by simulations of a flexible plate
deformation in shear flows. Good agreements are found comparing with ex-
perimental results.Finally some applications of importing realistic geometries
from Computer Assisted Design (CAD) software, are shown to demonstrate
the future applications of the method.
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1. Introduction

Fluid-structure interaction (FSI) problems can be widely found in both
natural processes and engineering applications. Examples include wings of
birds and insects interact with surrounding airs [1], motions of floating wind
turbines in deep sea [2] and fish swimming [3]. Furthermore, many biological
systems involve FSI processes like the transport and deformation of red blood
cells [4] and cell migration in tumors [5]. Besides their importance, under-
standing these FSI processes is still a challenging task due to their complex
dynamics. Particularly, when the structural deformations are considerable
large under high Reynolds number, where the flows and structure motions
are strongly coupled.

Many numerical models are developed to simulate FSI problems with
some success [6–12]. These models can be classified into two categories de-
pending on the mesh strategies. The first approach use body fitting meshes
where the mesh always coincides with the deformable structure boundaries [13,
14]. It is also referred to as the monolithic approach since fluid and structure
motions are solved within the same equation systems. This approach can
achieve high accuracy and numerical stability due to the exact description of
structure boundaries [6, 13, 14]. However, it also suffers from high compu-
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tational cast since mesh regenerations are frequently required, particularly
when large deformations occur. On the other hand, fixed meshes are adapted
in the second approach where the governing equations of fluid and structures
are solved separately. Since the structure boundaries are generally not on
the fixed mesh nodes, the influence of structure motions on the fluid is in-
troduced to nodes that near to solid boundaries. For example, the widely
used Immersed Boundary Method (IBM) [15] replaces the structure effects
by an external force field. IBM schemes can be classified into diffuse inter-
face IBMs [9, 16] and sharp interface IBMs [17, 18]. However, penetrating
streamlines are often found for diffuse interface IBMs particularly for explicit
schemes [9]. The second approach is adapted here since it is most suited for
practical problems [19].

In this work, the flows are modelled by the Lattice Boltzmann Method
(LBM). LBM has emerged as an effective approach of Computational Fluid
Dynamics(CFD) during the last decades, and it has attracted numerous in-
terests in simulating complex flows including FSI [6, 20]. The success of
LBM is mainly contributed by several unique advantages. First, the solution
of advection in LBM is exact which reduce the numerical diffusion errors in
conventional CFD methods [21]. Second, the locality of the collision opera-
tor guarantees a high parallelization efficiency of LBM codes. LBM is also
capable to efficiently handle complex moving boundary conditions. For ex-
ample, Zhang et al. [22] studied the settling of particles with complex shapes
with LBM. Furthermore, LBM can be easily coupled with other numerical
schemes like the Discrete Element Method (DEM) [23–26] for fluid-particle
interactions and the Finite Element Method (FEM) [6, 27, 28] for deformable
structures. Recently, Liu et al. [12] coupled LBM with the Material Point
Method (MPM) for 2D FSI problems with large structural deformations.

For structure dynamics, the Material Point Method (MPM) which can
handle structure large deformations is adapted. MPM origins from the
particle-in-cell Method [29] and is first introduced by Sulsky [30] for solid
mechanics. As a hybrid method, MPM shares features of both meshfree
methods (Smoothed Particle Hydrodynamics [31], Element Free Galerkin
Method [32]) and grid-based methods (FEM). The space discretization is
similar to meshfree methods where the solid structure is represented by a
set of material points. Historical information like mass, density, momentum,
strains and stresses are carried by material points. However, unlike clas-
sical meshfree methods, material points do not directly interact with each
other in MPM. Instead, a background mesh is employed to solve governing
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equations in a FEM fashion. The information transformation between mate-
rial points and the background mesh is achieved by interpolations with the
help of shape functions. The advantages of MPM can be summarized in the
following aspects: MPM can handle large deformation problems due to its
particle representation and the mesh distortion problems in classical FEM
are avoided [33]. MPM is an efficient scheme since it does not require the
expansive neighbour searching procedure which is essential for pure meshfree
methods. Furthermore, applying boundary conditions in MPM is easy and
identical to FEM, which is not so straightforward in meshfree methods.

LBM have been successfully coupled with structure solvers in previous
studies. For instance, Rosis et al. [6] proposed three coupling schemes for
LBM and FEM, both explicit and implicit schemes are considered. It is found
that all these coupling scheme can achieve decent accuracy and numerical
stability. The best accuracy is achieved by the implicit coupling scheme with
the highest computational cost. The enhanced explicit coupling scheme is a
good choice if the computational cost is the bottleneck.

The goal of this work is to provide a coupled model that combines the
efficiency of LBM on solving flows and the capability of MPM on handling
large deformations for simulating FSI problems with large deformation under
a broad range of Reynolds numbers.

2. Problem statement

The study aims to model interactions between single phase fluid and fully
immersed structure. The weakly compressible Newtonian fluid is considered
and flows can be described by the Boltzmann’s kinetic equation.

For structure dynamics, the material is assumed to be isotropic, homoge-
neous and follows linear elastic law. The structure motions are governed by
mass and linear momentum conservation equations.

At the fluid-structure interface, equilibrium and geometrical compatibility
are assumed [6]. The non-slipping condition should be satisfied: the fluid
velocity equals to the structure velocity at the interface. Due to the Newton’s
third law, the total traction on the fluid boundary has same magnitude but
with opposite direction as the total traction on the structure boundary.
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3. Numerical model

3.1. Material Point Method

The structure motions are governed by Eq. 1, where ρs, us, σs, bs and fhs
are the density, velocity, Cauchy stress tensor, body force and hydrodynamic
force of the structure. The subscript s stands for properties of the structure,
it is omitted in rest of this section for readability. Eq. 1 is discretized and
solved by MPM. These are four major procedures of MPM: 1) Mapping
information from particles to the mesh. 2) Solving governing equations on
the mesh. 3) Mapping information from the mesh back to particles. 4)
Updating stress on particles. In the following the subscripts p and I stand
for properties of particles and nodes respectively.

Dρs
Dt

+ ρs∇ · us = 0,

ρs
Dus

Dt
= ∇ · σs + ρsbs + fhs ,

(1)

1) Mapping information from particles to the mesh nodes. The nodal
mass mI , momentum mIuI , external force f extI and internal forces f intI are
interpolated as following:

mI =
∑
p

φI
(
xp
)
mp,

mIuI =
∑
p

φI
(
xp
)
mpup,

f extI =fh(xI) +
∑
p

φI
(
xp
)
mpb,

f intI =−
∑
p

Vpσ∇φI
(
xp
)

(2)

Where φI
(
xp
)

is the effective grid shape function that evaluated at xp. mp,
up and Vp are the particle mass, velocity and volume. f extI and f intI are the
external and internal force. b is the body force (like gravity) and the nodal
hydrodynamic force fh is used to couple with fluid solver later.

2) Solving the momentum equations at the background mesh:

(mIuI)
t+∆tMPM = (mIuI)

t + f tI∆tMPM ,

ut+∆tMPM
I =

(mIuI)
t+∆tMPM

mt
I

,
(3)
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Where the total force is given by fI = f extI + f intI . The Dirichlet boundary
conditions are applied in this step as: (mIuI)

t+∆tMPM = 0 and f tI = 0.
3) Mapping information from nodes back to particles and update particle

position, velocity:

xt+∆tMPM
p =xtp + ∆tMPM

∑
I

φI

(
xtp

) (mIuI)
t+∆tMPM

mt
I

,

ut+∆tMPM
p =utp + ∆tMPM

∑
I

φI

(
xtp

) f t+∆tMPM
I

mt
I

,

(4)

4) Update particle stresses:

Lt+∆tMPM
p =

∑
I

φI

(
xtp

)
ut+∆t
I ,

F t+∆tMPM
p =

(
I +Lt+∆tMPM

p ∆tMPM

)
F t
p ,

V t+∆tMPM
p =det

(
F t+∆tMPM
p

)
V 0
p ,

σt+∆tMPM
p =σtp +

(
∆σp + σtp ·W T +W · σtp

)
∆tMPM

(5)

Where Lp and Fp are the velocity gradient and deformation gradient tensors.
The strain rate tensor ∆ε and rotation rate tensor W are given by ∆ε =
1
2

(
L+LT

)
, W = 1

2

(
L−LT

)
, which are the inputs for the constitutive

model to calculate stress rate ∆σ. The linear elastic model for homogeneous
and isotropic materials is adapted here: ∆σp = Ce : ∆ε. The elasticity
tensor Ce is given as:

Ce =
E

(1− νs)(1− 2νs)



1− νs νs νs 0 0 0
νs 1− νs νs 0 0 0
νs νs 1− νs 0 0 0
0 0 0 1−2νs

2
0 0

0 0 0 0 1−2νs
2

0
0 0 0 0 0 1−2νs

2


(6)

Where E is the Young’s modulus and νs is the Poisson ratio.

3.1.1. CPDI scheme

The original MPM uses the linear hat shape function [29] which suffers
from the crossing error. It often occurs when the material points move across
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the cell boundaries [34]. The main reason of crossing errors is the discontinu-
ity of the shape function gradient. One popular solution to address this issue
is adapting the generalized interpolation material point method (GIMP) [34]
where a smoother shape function is used. The GIMP shape function and its
gradient are defined as:

φI
(
xp
)

=
1

Vp

∫
Ωp

χ
(
x− xp

)
SI (x) dx,

∇φI
(
xp
)

=
1

Vp

∫
Ωp

χ
(
x− xp

)
∇SI (x) dx

(7)

Where SI (x) is the linear hat shape function, χ (x) and Ωp are the particle
characteristic function and its support domain. It can be seen that Eq. 7
recovers to standard MPM shape function if the Dirac delta function is chosen
as the particle characteristic function. Classical GIMP employs the piece-wise
constant particle characteristic function:

χ (x) =

{
1 x ∈ Ωp

0 otherwise
(8)

Many variants of GIMP are developed to solve Eq. 7. The main difference
lays on how to update the particle domain Ωp. Ωp can be treated as time-
independent in the unchanged GIMP (uGIMP). It is updated by using the
deformation gradient F with (contiguous particle GIMP) or without consid-
ering the shear deformation. Overall, these GIMP schemes relief the crossing
errors but also have their shortcomings. For instance, extension instabilities
are reported for uGIMP under large particle separations. Also, gaps and
overlapping between support domains are inevitable under general loading
conditions [35].

The latest development of GIMP scheme is CPDI (Convected Particle
Domain Interpolation) [35]. By introducing additional corners, the particle
domains can be tracked without gaps and overlapping with others. Nguyen
et al. [33] further extend CPDI with varies types of particle domains for both
2D (triangle, quadrilateral, and polygon) and 3D (tetrahedron and poly-
hedron). Here, the linear tetrahedron elements are used to represent the
particle domains since it is convenient to describe complex 3D geometries.
The alternative shape function for tetrahedron elements is constructed by
interpolating standard shapes functions at corners:
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SappI (x) =
4∑
c=1

Mc (x)SI (xc) (9)

xc is the corner position and Mc (x) are the shape functions of corners. The
CPDI shape function and its gradient can be obtained by substituting Eq. 9
to Eq. 7:

φI
(
xp
)

=
1

Vp

4∑
c=1

[∫
Ωp

Mc (x) dx

]
SI (xc) =

4∑
c=1

wfcSI (xc) ,

∇φI
(
xp
)

=
1

Vp

4∑
c=1

[∫
Ωp

∇Mc (x) dx

]
SI (xc) =

4∑
c=1

wg
cSI (xc)

(10)

Where wfc and wg
c are the weighting and gradient weighting functions which

are given accordingly:

wfi =
1

4
,

wg
i =

1

6Vp

[
ai, bi, ci

]T (11)

And

a1 =y42z32 − y32z42, a2 = y31z43 − y34z13,

a3 =y24z14 − y14z24, a4 = y13z21 − y12z31,

b1 =x32z42 − x42z32, b2 = x43z31 − x13z34,

b3 =x14z24 − x24z14, b4 = x21z13 − x31z12,

c1 =x42y32 − x32y42, c2 = x31y43 − x34y13,

c3 =x24y14 − x14y24, c4 = x21y13 − x31y12,

6Vp = x21(y23z34−y34z23) + x32(y34z12 − y12z34) + x43(y12z23 − y23z12)

(12)

Where xij = xi − xj, yij = yi − yj and zij = zi − zj. xi, yi and zi are
the coordination of ith corner of the tetrahedron. The order of corners are
arranged to make sure that the signed volume Vp stays positive [33].

3.2. Lattice Boltzmann Method

The fluid flow is simulated by the Lattice Boltzmann equation (LBE) – a
discretized form of the Boltzmann equation [24, 36, 37]. The D3Q15 model
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is used with the space divided into cubic lattices. The velocity domain is
discretized to fifteen velocity vectors as shown in Figure 1. The discrete
velocity vectors are defined as follows:

ei =


0, i = 0,

(±C, 0, 0), (0,±C, 0), (0, 0,±C), i = 1 to 6,

(±C,±C,±C), i = 7 to 14,

where C = ∆xLBM/∆tLBM being the characteristic lattice velocity (∆xLBM
is the lattice size).

Based on the Chapman-Enskog expansion of the Boltzmann equation, an
evolution rule is applied to every distribution function [38]:

fi(x+ ei∆tLBM , t+ ∆tLBM) = fi(x, t) + Ωcol, (13)

where fi is the probability distribution function, x is the position of the local
lattice, ∆t is the time step and Ωcol is the collision operator. The well-known
Bhatnagar-Gross-Krook (BGK) collision operator is used in this study,

Ωcol =
∆tLBM
τ

(f eqi − fi), (14)

where τ is the relaxation time and f eqi is the equilibrium distribution given
by,

f eqi = ωiρf

(
1 + 3

ei · uf
C2

+
9(ei · uf )2

2C4
−

3u2
f

2C2

)
, (15)

The weights are ω0 = 2/9, ωi = 1/9 for i =1 to 6, ωi = 1/72 for i =7 to 14.
The kinetic viscosity is related to the relaxation time by

ν =
(∆xLBM)2

3∆tLBM

(
τ − 1

2

)
, (16)

Here the Mach number is defined as the ratio of the maximum velocity to C.
When Ma � 1, the LBE can be recovered to the Navier-Stokes equation.
More detail can be found in [39]. The macroscopic properties of fluid such
as density ρ and flow velocity u can be determined by the zero-th and the
first order moment of the distribution function:

ρf (x) =
∑14

i=0 fi(x),

uf (x) = 1
ρf (x)

∑14
i=0 fi(x)ei,

(17)
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It is well known that the stability of the LBM simulation is affected by the
relaxation time τ . The value of τ should not be too close to 0.5 because of the
use of a linearized BGK collision operator [24]. Due to this limitation, the
standard Lattice Boltzmann method is only suitable for flow at relatively low
Reynolds numbers. This problem can be relieved by adapting sophisticate
collision models liked Multiple Relaxation Time (MRT) model [40]. Recently,
the central moments based collision model [41, 42] shows promising potentials
in terms of numerical stability with few free parameters. Another solution is
sub-grid turbulence models in which the the influence of sub-grid eddies are
considered as an additional eddy viscosity. In this study, the Smagorinsky
sub-grid turbulence module introduced by Feng [43] is employed. The scales
are divided into filtered and unresolved scales by the filtering of the LBE
based on the lattice size ∆xLBM . The LBE can be directly solved for filtered
scales. An additional relaxation time τa is used to represent the effect of
motion at the unresolved scales [40]:

τtotal = τ + τa, (18)

where τtotal is the total relaxation time. τa is related to the turbulence vis-
cosity νa:

τa =
3∆tLBM

(∆xLBM)2νa, (19)

with the turbulence viscosity νa given by

νa = (Sc∆xLBM)2Ŝ, (20)

where Sc is the Smagorinsky constant with a typical value range between
0.1 and 0.2; and the magnitude of the filtered strain-rate tensor Ŝ can be
obtained from Q̃ij - the second moment of the distribution function, i.e.,

Ŝ =

√
2
∑

i,j Q̃ijQ̃ij

2ρf0Cs2τtotal
, (21)

where the speed of sound Cs = 1/
√

3 and Q̃ij is given by

Q̃ij =
14∑
k=0

ekiekj(fk − f eqk ), (22)

where fk and f eqk are the non-equilibrium distribution function and equilib-
rium distribution function, respectively.

10



3.3. Coupling scheme between MPM and LBM

To successfully model fluid-structure interactions, the no-penetration non-
slip boundary conditions need to be imposed on the fluid-solid interface prop-
erly, the hydrodynamic forces act on solids are also required. In LBM, there
mainly are two categories of boundary schemes can satisfy these require-
ments. Firstly, macroscopic boundary conditions where macroscopic proper-
ties are modified, such as velocity corrected immersed boundary method [9]
in which the effects of boundaries are replaced by a smoothed external force
field for fluid. In the second category, the distribution functions are modified
directly to impose boundary conditions. Here we consider the later one since
it can maintain a sharp interface and fit the kinetic nature of LBM.

The LBM nodes are divided into fluid nodes and solid nodes, the fluid
nodes which are close to the solid boundary are further identified as boundary
nodes (xf in Fig. 2). Since the uniform-sized mesh is used in classic LBM,
the curved boundaries generally locate between boundary nodes and solid
nodes. Thus, the distribution functions at boundary nodes which streamed
from solid nodes are missing, the key task is to determine missing distribution
functions properly.

The simplest solution is the bounce-back role where molecules depart
from xf with velocity ei′ hit on wall and return back to xf with opposite
discrete velocity ei. It is clear that the wall is assumed to be located at
the middle point between xf and xs regardless of the actual position. This
assumption leads to stair-wise boundaries which damage the second-order ac-
curacy of LBM. Therefore, interpolated bounce-back(IBB) schemes [44] are
proposed to reduce geometrical errors. The idea is to interpolate the missing
distribution functions from existing ones and the interpolation weights de-
pend on q =

∣∣xf − xw∣∣ /∣∣xf − xs∣∣. Most IBB schemes need to treat q 6 0.5
and q > 0.5 conditions separately, Yu et al [45] proposed an unified IBB
scheme. The idea is to evaluate distributions at wall fi′(xw, t+∆tLBM) first,
then the bounce-back role is applied, the missing distributions at f after
streaming fi(xf , t + ∆tLBM) is interpolated between fi(xw, t + ∆tLBM) and
fi(xff, t+ ∆tLBM). Yu’s scheme can be summarized as:

fi(xw, t+ ∆tLBM) = qf+
i′ (xf , t) + (1− q)f+

i′ (xff , t) + 6ωi′ρf
ei · uw
C2

, (23)

fi(xf , t+∆tLBM) =
1

1 + q
(fi(xw, t+∆tLBM)+

q

1 + q
fi(xff , t+∆tLBM), (24)
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where uw is the wall velocity. Yu’s scheme does not depend on the value of
q, thus it is used for the coupling scheme. When the density ratio between
structure and fluid approaches to 1, partitioned coupling algorithms tend to
become unstable due to the added-mass effect [6, 19, 46, 47]. In the presented
model, the last term in Eq. 23 which includes uw can be interpreted as the
added-mass due to the moving wall. If we consider an idealized situation as
shown in Fig. 3 where a 2D fully-relaxed (equilibrium) flow with a moving
wall is considered. The wall is perpendicular to the x-axis and moves with
a constant velocity uw(ux, 0). The doted black line and solid black line
represent the position of wall at time t and t + ∆tLBM respectively. The
area of replaced fluid by the moving wall is illustrated as the shadowed area
in Fig. 3. Clearly, the added-mass ∆m within one time step is given as:
∆m = −ρfux by assuming ∆xLBM = ∆tLBM = 1. Now we consider the
added-mass through the last term of Eq. 23 with D2Q9 lattice model. It
only affects the distribution function f3, f6, f7 as shown in Fig. 3. Thus, the
added mass in the present model ∆ms is given as:

∆ms =
∑
i=3,6,7

6ωi′ρf
ei · uw
C2

= −6ρfux
C2

(ω1 + ω5 + ω8) . (25)

With the help of C = ∆xLBM/∆tLBM = 1 and ω1,2,3,4 = 1/9, ω5,6,7,8 = 1/36
for D2Q9 lattice model, we have ∆ms = −ρfux which is exact the same as
the analytical result ∆m. Similar conclusions can also be found from [48].
The modified distribution functions from Eq. 23 are latter used to calculate
the hydrodynamic force acted on structures.

One drawback of having sharp solid boundaries is that solid nodes may
switch to fluid nodes with no fluid information since the structure can freely
move within the fluid domain. Therefore, these new fluid nodes need to be
initialized with proper distribution functions. This procedure is often referred
to refilling algorithm. Peng et al. [49] discussed the influence of different
refilling algorithms in terms of numerical stability and accuracy, their results
show that refilling may have significant contributions to the numerical noise
on the flocculating hydrodynamic forces. Here, the averaged extrapolation
method is used as suggested [12, 49]

fi(xnew) =
1

Nnei

∑
nei

(
2fi(xnew + enei)− fi(xnew + 2enei)

)
, (26)

Where xnew is the new fluid node position, enei are the discrete velocities that
point from xnew to other existing neighbor fluid nodes. Notes that the new
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refilled fluid nodes are not used for extrapolation. Nnei is the total number
of possible enei (considering the first neighbor fluid nodes, excluding the ones
that were solid in the previous time step). After distribution functions are
refilled, the macroscopic properties like density and velocity are calculated
as Eq. 17.

From fluid point view, IBB can maintain sharp fluid-solid interfaces, but
it also requires accurate boundary descriptions which are missing in classical
MPM due to the particle representation of structures. But with the help of
additional corners, CPDI can track the geometries and have sharp boundary
descriptions. The structure is discretized into tetrahedrons and the bound-
aries are described by triangular formed by corners. Therefore, the corners
are used to determine the solid interface velocity uw which is essential for
Yu’s scheme. As shown in Fig. 2, the crossing point xw always lays within a
triangle formed by surrounding corners. Thus uw can be interpolated from
the velocity of corners under barycentric coordinates s and t:

uw = uc0 + s(uc1 − uc0) + t(uc2 − uc0) (27)

and the which values, alongside IBB q parameter are calculated by solving
an linear system:∆tLBMeix, xc0 − xc1, xc0 − xc2

∆tLBMeiy, yc0 − yc1, yc0 − yc2
∆tLBMeiz, zc0 − zc1, zc0 − zc2


qs
t

 =

xc0 − xfyc0 − yf
zc0 − zf

 (28)

where ∆xLBM is the space step of LBM, eix, eiy, eiz are the components of
ith LBM discrete velocity that points from the fluid node xf to solid node
xs. The corner position xc and velocity uc are calculated as:

ut+∆tMPM
c =

∑
I

SI
(
xtc
)
ut+∆tMPM
I

xt+∆tMPM
c = xtc + ut+∆tMPM

c ∆tMPM

(29)

The material point position is then updated by averaging the surrounding
corner positions:

xp =
1

4

∑
c

xc (30)

The influence of solid structure on the fluid is modelled by the above no-
penetration non-slip boundary conditions, the structure interacts with fluid
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though the hydrodynamic forces. The hydrodynamic forces fhs appear in
Eq. 2 as external forces. Accurate and efficient calculation of fhs is essential
for a successful coupling scheme. One widely used scheme is the momentum
exchange method [50], where the hydrodynamic forces can be calculated as
a sum of all the momentum exchanges along with every discrete velocity
that collides with solid walls. The momentum exchange method is exten-
sively used for fluid-particle interactions. However, it suffers from numerical
noises which introduce extreme flocculating hydrodynamic forces [49]. Wen
et al. [51] shows that the original momentum exchange method does obey
the Galilean invariant principle. They further proposed a Galilean invari-
ant momentum exchange method which relief numerical noises considerable.
Therefore, the Galilean invariant momentum exchange method is adapted in
this work, the momentum exchange along ei is given:

fh,is (xw, t) = (ei − uw)fi(xf , t)− (ei′ − uw)fi′(xf , t)− 2ρ0wiei (31)

Where i represents all the directions of missing distribution functions after
streaming, i′ is the opposite direction of i. Compared with the original mo-
mentum exchange method, ei is shifted by the solid velocity. Since the pres-
sure fluctuation is considered in LBM instead of the total pressure, the last
term 2ρ0wiei refers to the influence of the reference pressure [12]. Since the
missing distribution functions are calculated by Eq. 23 in which the added-
mass is represented by the last term of Eq. 23, therefore, the added-mass
effect on structures is take into account through Eq. 31. Note that fh,is can-
not be directly used for MPM since it acts at xw. Therefore, it is distributed
to surrounding corners as a function of the barycentric coordinates obtained
beforehand:

fh,is (xc0, t) =(1− s− t)fh,is (xw, t)

fh,is (xc1, t) =sfh,is (xw, t)

fh,is (xc2, t) =tfh,is (xw, t)

(32)

The hydrodynamic force acts at corners can be obtained by:

fhs (xc, t) =
∑
l

fh,ls (xc, t) (33)

Where the set l includes all the directions of missing distribution functions.
Finally, the nodal hydrodynamic force in Eq. 2 is interpolated from corners:

fhs (xI , t) =
∑
c

SI(xc)f
h
s (xc, t) (34)
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4. Validation

4.1. Validation of MPM structure solver: Elastic beam
To validate the MPM structure solver, cantilever beam simulations are

conducted and compared with Euler’s beam theory. The dimension is a
length of L = 100 mm and a square cross-section of side S = 20 mm. The
material properties are given as: Density ρs = 1030 kg/m3, Young’s modulus
E = 1.23 × 106 pa and Poisson ratio νs = 0.3. The left end of the beam is
fixed and the right end is free to deform under loads as illustrated in Fig. 4.
A force F is applied at the right end of the beam, which is achieved by
distributing it uniformly over the corner points at the end of the beam. The
force linearly increases from 0 at the beginning to the maximum value and
stays at the desired value for numerical stability consideration. The beam is
discretized into material points and the space step of the background mesh
is determined as ∆xMPM = βLc where β is the resolution ratio and Lc is
a characteristic length of the particle domain. The maximum dimension of
tetrahedron elements is chosen as Lc and β = 1. The time step is given as
∆tMPM = L/(nxC

MPM
s ) where nx is the approximated number of material

points along x-axis. The MPM solid speed of sound is calculated as CMPM
s =√

E/ρs. The damping coefficient ηdamp is set to 1 s−1 to disperse kinetic
energy and help the system reaches the equilibrium state.

By keeping S/L and deformation small, Euler’s beam theory can be used
to determine the deviation w of the cantilever’s middle plane along the x
coordinate as:

w(x) =
Fx2(3L− x)

6EI
(35)

where I = S4/12 is the second area moment of the square cross-section.
The simulated displacement configuration matches well with Euler’s beam
theory for F = 1 N as shown in Fig. 5. The model is further evaluated by
varying loading force F from 1× 10−3 to 1 N. Maximum displacements are
plotted against loading forces in Fig. 6. A good agreement is found between
simulations and the analytical solution (Eq. 35).

4.2. Validation of LBM flow solver: flow around a circle
Flow around an obstacle is simulated to validate the LBM fluid solver.

Using dimensional analysis, two dimensionless numbers: Reynolds number
Re and drag coefficient Cd can be defined as:

Re =
ūxDc

νf
(36)
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Cd =
8Fx

ρf ū2
xπD

2
c

(37)

where ūx is the x component of averaged velocity over the fluid domain.
The characteristic length Dc is defined as the circle diameter. ρf and νf
are the fluid density and kinematic viscosity. Fx is the x component of the
total hydrodynamic force acted on the obstacle. According to Buckingham
π theorem, Cd must be a function of Re.

A circle obstacle is used as the first example to demonstrate the appli-
cability of the LBM fluid solver for turbulence flows with the help of LES
sub-grid scheme. The circle with a diameter of 42 cells is placed in the middle
of a 2100× 2100 cells domain as shown in Fig. 7. The circle diameter is cho-
sen as the characteristic length Dc. Velocity boundary conditions are applied
on the left and right with a velocity equal to 0.1 in lattice units. The Re is
controlled by varying the viscosity νf . Fx is calculated by summing momen-
tum exchanges over the solid boundary, more details can be found in [52].
The value for Fx is taken as a time average to eliminate the fluctuations that
appear at high Re values due to the presence of eddies. Cd as a function of
Re is plotted in Fig. 8. Even for very high Re, the LES scheme produces
accurate and stable results when compared with experimental results.

4.3. Validation of MPM-LBM force coupling: flow around a cube

The second validation is flows around a 3D cube. Since the goal is to
couple MPM with LBM, thus the cube obstacle is described by MPM par-
ticles with no deformation and zero velocities. The side length of the cube
is Lcube = 1.45m and it is discretized into 6 tetrahedral material points with
their associated tetrahedron elements. The fluid domain size is 24.1m ×
6.1m × 6.1m. Fluid density ρf and kinetic viscosity νf are 1000 kg/m3 and
2.0803× 10−6m2 · s accordingly. The cube is placed at the center of the fluid
domain (12.05m×3.05m×3.05m) as shown in Fig. 9. Since the ratio between
cube size and domain width is fairly small, periodic boundary conditions are
applied to all six domain boundaries. The space and time step are chosen as
∆xLBM = 0.1m and ∆tLBM = ∆tMPM = 0.2s. The fluid field is initialized
with zero velocity and the fluid is driven by a body force. The characteris-
tic length is given as Dc = 1.2407 · Lcube. During simulations, Re increase
with time due to the constant body force. The relation between Cd and Re
can only be expressed analytically for sphere shape under the limitation of
Re � 1. Thus, many empirical corrections are developed for non-spherical
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shapes and high Re. The formula proposed by Swamee and Ojha [53] is
used as comparisons:

Cd =
128Re−0.8

1 + 4.5β0.35
s

(38)

where the shape factor βs = c/
√
ab and a = b = c = 1 for cube. Two

simulations are conducted with different body force values: 2.5 × 10−5 and
2.5× 10−5m/s2. This low body force value ensures a broad range of low Re
values with corresponding Cd in a single simulation run. As shown in Fig. 10,
good agreements are found between simulated Cd and the prediction from
Eq. 38 regardless of different body forces, which implies that the LBM fluid
solver can be used to interstage flow problems with large range of Re.

4.4. Validation of MPM-LBM coupling: a flexible plate deformation in shear
flow

Finally, the MPM-LBM coupling scheme is validated by simulating a
classical FSI problem: a flexible plate deforms in a shear flow. As illustrated
in Fig. 11, the elastic plate with length l = 0.1m, width k = 0.02m and
thickness b is immersed in the flow vertically and attached to the middle of
the bottom. Rest part of the plate can freely move, thus the plate bends
under shear flows. The material properties of the plate are given as: Density
ρs = 1030kg/m3 Young’s modulus E = 1.23 × 106 pa and Poisson ratio
νs = 0.3. The domain size is fixed to 0.2m× 0.5m× 0.5m.

The velocity boundary condition is applied to the inlet and zero veloc-
ity gradient boundary condition for the outlet (see Fig. 11). To mimic the
experimental setup of Bano et al. [54], the top boundary is set to be free slip-
ping. Boundaries normal to the y-axis are periodic and the bottom boundary
is solid wall. The fluid field is initialized with zero velocity and the velocity
profile of inlet is given as:

v(z) = vmax

(
1− (z − L)2

L2

)
(39)

where z is the height of cells and the domain height L = 0.5m. The top
velocity vmax is determined by Reynolds number as: vmax = 1.5Reνf/L.
Fluid density ρf and kinetic viscosity νf are 1220 kg/m3 and 8.2×10−4m2 · s
accordingly. During simulations, vmax linearly increases from zero to the
desired value to avoid a sharp velocity gradient.
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To meet the numerical stable conditions for both MPM and LBM, the
time step is determined as ∆tLBM = ∆tMPM = l/(nzC

MPM
s ) where nz is

the approximated number of material points along z-axis which controls the
MPM particle resolution. Here, nz = 50 is used. The MPM solid speed of
sound is calculated as CMPM

s =
√
E/ρs. Same time step is applied to both

MPM and LBM since the coupling scheme requires information exchange at
the same time frame. Although both MPM and LBM use Cartesian grids,
they do not need to coincide and in fact they do not match in any of the
cases presented here. The mesh resolution of the MPM grid is determined
as ∆xMPM = βLc where Lc is a characteristic length of the particle domain
and the maximum dimension of tetrahedron elements is chosen as Lc as
explained before. β is a parameter that controls the ratio between MPM
mesh resolution and particle resolution. The LBM space step is given as
∆xLBM = 5× 10−4m.

Two types of plates with b = 0.005 and 0.01m are simulated and com-
pared with the experimental results from Bano et al. [54] under the same
conditions. The Reynolds number Re = 9 is used, the Mach number is
given as Ma = 0.00312 and the relaxation time τ = 1.541762. Due to the
low Reynolds number, the plate can reach a steady state when the hydro-
dynamic force balanced with the elastic stress. It is found that β has a
significant influence on the model accuracy, with β = 1.5, the simulated
steady-state plate configurations show great agreements with experimental
results as seen in Fig. 12.

5. Numerical examples

An important feature of the present model is that it can handle turbu-
lence flows with the help of LES sub-grid model. To demonstrate its ca-
pability for high Re applications, simulations of a flexible plate deforms in
a shear flow under high Re are conducted. The simulation setup is same
as in Sec. 4.4 with plate width b = 0.005m. vmax is fixed (same value as
in Sec. 4.4) due to the low Mach number requirement of LBM. Re is con-
trolled by varying the fluid viscosity. Seven values of Re are simulated:
Re = 1, 10, 100, 1× 103, 1× 104, 1× 105 and 1× 106. The relaxation time is
given as τ = 9.875858, 1.437586, 0.5937586, 0.5093759, 0.5009376, 0.5000938
and 0.5000094 accordingly. With the help of LES sub-grid model, simula-
tions are numerically stable even when τ approaches to 0.5.
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The averaged position of the plate top layer is monitored. Time evolutions
of the plate deflection along x-axis (δx) are plotted in Fig. 13 where deflections
are rescaled by L. Three stages can be identified regardless of Re: δx increases
with time linearly at the first stage, identical increase rates are found for all
Re. Rapid decreases are observed after δx reach to the maximum value
(expect for Re = 1). At the third stage, the time-averaged δx stay as a
constant since the plate reaches the equilibrium configuration. Boundaries
between stages are insensitive to Re. But Re has a significant influence on the
maximum and equilibrium value of δx. For Re < 1× 103, δx does not change
with time during the third stage. It is worth to point out that equilibrium δx
does not monotonic increase with Re. For example, larger equilibrium δx is
found with Re = 1 comparing with Re = 100. For Re > 1× 103, equilibrium
δx barely change with Re and δx flocculates around the equilibrium value.
Periodic patterns of δx are also found and the magnitude and frequency are
independent to Re. The deflection along z-axis (δz) are also plotted in Fig. 13.
Overall, the patterns of δz are very similar as δx, but stronger oscillations
of δz are founded when Re > 1 × 103. Fig. 15 and 16 show snapshots of
the plate configuration and fluid velocity field for Re = 1 and 1 × 103. The
truculent flows at Re = 1× 103 are mainly responsible to the oscillations of
plate.

The last example is a deformable fish (Fig. 17) swings in flows. Fig. 18
shows interactions between the fish and surrounding fluid. Periodic bound-
aries are applied along x-xis and rest boundaries are solid walls. The flow is
driven by a constant body force, 1/3 of the fish is fixed and rest are free to
move. It can be found that the fishtail starts to swing which demonstrates
the capability of the proposed model on handling FSI problems with complex
geometry obtained from CAD meshes. Videos of this simulation are attached
as supplementary material.

6. Conclusion

In this paper, we introduced a 3D numerical scheme to simulate FSI
problems with large deformation under high Reynolds number. Using inter-
polated bounce back scheme and momentum exchange method, the efficiency
of LBM on solving flows and the capability of MPM on handling large de-
formations are integrated together. The recently developed CDPI scheme of
MPM ensures sharp descriptions of solid boundaries. The LBM is enhanced
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by LES sub-grid model for turbulence flows. Implementations of MPM, LBM
and the coupling scheme are presented in detail.

The MPM structure solver is validated by comparing with Euler beam
theory with great agreements. Then the LBM fluid solver is tested for fluid
round circle and cube obstacles under a large range of Re. It is found that
the fluid solver can handle high Re simulations with decent accuracy. The
coupled model is then compared with experiments of a deformable plate
under shear flow. The simulated plate equilibrium configurations match well
with experimental observations for different plate dimensions.

To demonstrate the capability of the model for high Re applications, the
plate deformations under shear flows are simulated with Re from 1 to 1×106.
Significant differences in structural response are found for various Re. An
equilibrium state can be reached for low Re, where periodic oscillations are
founded at high Re. The model is then applied to simulate fish motions in
the flow which clearly shows that the model can handle complex structure
geometries.

In conclusion, the presented results demonstrate the potential of the
model as a powerful numerical tool to investigate FSI problems, particularly
for large deformations, complex structure geometries and high Re situations
which can be found in many engineering and science disciplines.
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Figure 1: Discrete velocity vectors for D3Q15 [24].

Figure 2: Schematic of the interpolated bounce back role at the fluid-structure interface,
where “s” for the closest solid node, “w” for wall, “f” for the boundary node, “ff” for the
neighbouring fluid node of “f”.
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Figure 3: The doted black line and solid black line represent the position of wall at time
t and t + ∆t respectively. The shadowed area represent the area of replaced fluid due to
the moving wall.
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Figure 4: Elastic beam simulation setup.

Figure 5: Comparison of displacement configuration between MPM simulation and Euler
beam theory with 1.0N loading.
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Figure 6: Maximum deflection as a function of the loading force.

Figure 7: Snapshot of the drag coefficient simulation for Re = 1000.
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Figure 8: Obtained value for the drag coefficient Cd of a circle as a function of Re.

Figure 9: Simulation setup for flows around a cube.
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Figure 10: The simulated drag coefficient Cd of a cube as a function of Re.

Figure 11: Simulation setup for a flexible plate deformation in shear flow.
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Figure 12: Steady plate configurations compared with experiments [54] with different
thicknesses, Re = 9.

Figure 13: The plate deflection along x-axis δx as a function of time and Re.
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Figure 14: The plate deflection along z-axis δz as a function of time and Re.
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Figure 15: Snapshot of the plate configuration and fluid velocity field at Re = 1.
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Figure 16: Snapshot of the plate configuration and fluid velocity field at Re = 1× 103.
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Figure 17: A tetrahedron mesh for CPDI to describe a fish.

Figure 18: Snapshot of the fish motions and the fluid velocity field.
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