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We investigated the settling dynamics of irregularly shaped particles in a still fluid under a wide
range of conditions with Reynolds numbers (Re) varying between 1 and 2000, sphericity (φ) and
circularity (c) both greater than 0.5, and Corey factor (CSF ) less than 1. To simulate the particle
settling process, a coupled Discrete Element-Lattice Boltzmann model combined with a turbulence
module was adopted. This model was first validated using experimental data for particles of spherical
and cubic shapes. For irregularly shaped particles, two different types of settling behaviours were
observed prior to particles reaching a steady state: ‘accelerating’ and ‘accelerating-decelerating’,
which could be distinguished by a critical CSF value of approximately 0.7. The settling dynamics
were analysed with a focus on the projected areas and angular velocities of particles. It was found
that a minor change of the starting projected area, an indicator of the initial particle orientation,
would not strongly affect the settling velocity for low Re. Periodic oscillations developed for all
simulated particles when Re > 100. The amplitude of these oscillations increased with Re. However,
the periods were not sensitive to Re. The critical Re that defined the transition between the ‘steady’
and ‘periodically oscillating’ behaviours depended on the inertia tensor. In particular, the maximum
eigenvalue of the inertia tensor played a major role in signalling this transition in comparison to the
intermediate and minimum eigenvalues.

I. INTRODUCTION

The behaviour of solid particles in fluids is frequently
encountered in both natural and industrial processes.
Examples include sediment transport in rivers and lakes,
suspension of fine particles in the atmosphere, particle
mixing in a fluidized-bed reactor widely used in the chem-
ical industry, and movement of activated sludge in set-
tling and separating tanks. As a basic form of parti-
cle motion, settling has attracted interests of many re-
searchers and has been studied experimentally [1–15]
and numerically [16–21]. However, most previous inves-
tigations were based on particles of regular shapes such
as spheres, cubes and ellipses [1, 16]. The simple parti-
cle geometries assumed in these studies are in contrast
with complex irregular shapes that are commonly found
in natural sediments and particles used in industrial pro-
cesses. The irregular particle shapes are likely to affect
significantly the motion of particles [2, 8].

As the simplest case, the settling of a sphere in a still
fluid has been widely investigated. Two dimensionless
numbers are used for quantifying the settling dynamics:
the particle Reynolds number Re and the drag coefficient
CD. With the sphere’s diameter dn selected as the char-
acteristic length and the terminal settling velocity up as
the characteristic velocity, Re is defined as follows:

Re =
updn
ν

. (1)

The drag coefficient CD indicates the magnitude of the
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drag force and is given by:

CD =
4dg(ρs − ρf )

3ρfu2p
. (2)

In Eqs. (1) and (2), ν is the kinematic viscosity of the
fluid; ρs and ρf are the density of the solid sphere and
the fluid, respectively; and g is the magnitude of the
gravitational acceleration. Therefore, CD is a function of
Re. The drag force experienced by the particle can be
written as:

FD = CDAp
ρfu

2
p

2
, (3)

where Ap is the projected area of the particle normal to
the vertical axis in the settling direction.

The first theoretical solution for a sphere settling in a
viscous fluid was derived by Stokes: CD = 24/Re, with
the limit of Re� 1 (also known as Stokes’ regime) where
the inertial force is negligible compared to the viscous
force [22]. In the range of 2000 < Re < 30000 (New-
ton’s regime), CD for spheres is approximately a con-
stant around 0.45. Under the condition of a moderate
Reynolds number between Stokes and Newton’s regimes,
both inertial and viscous forces are important and many
empirical formulas for CD in terms of Re have been pro-
posed based on data obtained by settling experiments
(see reviews by Clift et al. [3] and Khan [4]).

For non-spherical particles, CD is generally higher than
that for spheres at the same Re. Various corrections of
the original Stokes formula have been proposed for well-
defined regular particle shapes in Stokes’ regime. For in-
stance, corrections for spheroids and ellipsoids were given
by Clift et al [3] and White [5], and for cube and octa-
hedron by Leith [6] and Ganser [7]. The basic idea is
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to introduce an additional term fshape, which expresses
essentially the ratio of drag coefficient for a particle of
a non-spherical shape to that for a volume-equivalent
sphere. fshape is only related to shape factors. Simi-
larly, corrections in Newton’s regime have been proposed
by Pettyjohn and Christiansen [10] and Stringham and
Clarke et al [9]. At a moderate Reynolds number, Stokes’
correction and Newton’s correction are combined to pre-
dict the drag coefficient as reported by Ganser [7] and
Cheng [11]. More corrections to account for the particle
shape effects on the settling dynamics can be found in
the review by Loth [8].

By using a shape factor based on sphericity (details
in Sec. III), Haider [2] derived generalized drag coef-
ficient and terminal velocity formulas for the range of
0.1 < Re < 100000 based on data for particle shapes
of disk, cube octahedron, octahedron and tetrahedron.
It is important to remark that Haider’s formulas are lim-
ited in the range of sphericity from 0.5 to 1, and for fairly
isotropic particle shapes. Further improvement was made
by Tran-Cong et al. [1] by measuring the drag coefficients
and developing an empirical correction for six different
geometrical shapes, which were created by ordered as-
semblies of several identical smooth glass spheres glued
together. It should be pointed out that when Re exceeds
100, particles may develop of [13–15, 19] periodically os-
cillating and even chaotic behaviours, which hinder the
applicability of these formulas.

Over recent years, direct simulations have become a
widely used approach for investigating the interactions of
solid particles and fluid. Ladd [23] developed a compu-
tational method for spheres settling in a viscous fluid by
assuming particles as ‘shells’. Cate et al. [12] reported
a good agreement between simulation results given by
Ladd’s method and experimental data under conditions
of relatively low Reynolds numbers with the wall bound-
ary effect also considered. Beetstra et al. [18] preformed
the simulation for clusters of spheres as used in Tran-
Cong’s experiment and found the dependence of the drag
coefficient on the inter-particle distance. Hölzer and
Sommerfeld [16] indicated that the drag coefficient is also
related to the angle of incidence for non-spherical parti-
cles based on a three-dimensional simulation. A coupled
Discrete Element-Lattice Boltzmann method was devel-
oped by Cook et al. [24] and Feng and Michaelides [20]
with the Lattice Boltzmann Method (LBM) simulating
the fluid and the Discrete Element Method (DEM) [25]
simulating solid particles. So far, most research has been
focused on the sphere or other regularly shaped parti-
cles. Irregularly shaped particles, if considered, were ap-
proximated as clusters of spheres, which do not represent
fully natural particle shapes. In this study, we examined
the dynamic settling progress of irregularly shaped parti-
cles by using a modified LBM-DEM model developed by
Galindo-Torres [26]. An important feature of this model
is its ability to efficiently and accurately solve the inter-
action between fluid and particles of general shapes, even
non-convex ones. To the authors’ knowledge, this work is

the first three dimensional, direct simulation of settling
of irregularly shaped particles.

This paper is organized as follows: Sec. II describes the
methodology, including how to couple the Lattice Boltz-
mann Method with the Discrete Element Method, as well
as the turbulence module. Sec. III briefly introduces var-
ious shape factors, which have been used to characterise
irregularly shaped particles. Comparisons between nu-
merical results from this study and previous ones for reg-
ularly shaped particles are presented in Sec. IV. Sec. V
is focused on the settling of irregularly shaped particles,
including both steady and unsteady motions. Finally
Sec. VI presents conclusions from the present work.

II. METHODOLOGY

A. Lattice Boltzmann method with a turbulence
module

The fluid flow is simulated by the Lattice Boltzmann
equation (LBE) a discretized form of the Boltzmann
equation [27]. The D3Q15 model is used with the space
divided into cubic lattices. The velocity domain is dis-
cretized to fifteen velocity vectors as shown in Figure 1.
The discrete velocity vectors are defined as follows:

−→e i =


0, i = 0,

(±1, 0, 0), (0,±1, 0), (0, 0,±1), i = 1 to 6,

(±1,±1,±1), i = 7 to 14,

Based on the Chapman-Enskog expansion of the Boltz-
mann equation, an evolution rule is applied to every dis-
tribution function [28]:

fi(
−→x +−→e iδt, t+ δt) = fi(

−→x , t) + Ωcol, (4)

where fi is the probability distribution function, −→x is the
position of the local lattice, δt is the time step and Ωcol is
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FIG. 1. Discrete velocity vectors for D3Q15 [26].
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the collision operator. The well-known Bhatnagar-Gross-
Krook (BGK) collision operator is used in this study,

Ωcol =
δt

τ
(feqi − fi), (5)

where τ is the relaxation time and feqi is the equilibrium
distribution given by,

feqi = ωiρ

(
1 + 3

−→e i · −→u
C2

+
9(−→e i · −→u )2

2C4
− 3u2

2C2

)
, (6)

with C = δx/δt being the characteristic lattice velocity
(δx is the lattice size). The weights are ω0 = 2/9, ωi =
1/9 for i =1 to 6, ωi = 1/72 for i =7 to 14. The kinetic
viscosity is related to the relaxation time by

ν =
δ2x
3δt

(
τ − 1

2

)
, (7)

Here the Mach number is defined as the ratio of the max-
imum velocity to C. When Ma� 1, the LBE can be re-
covered to the Navier-Stokes equation. More detail can
be found in [28]. The macroscopic properties of fluid such
as density ρ and flow velocity −→u can be determined by
the zero-th and the first order moment of the distribution
function:

ρ(−→x ) =
∑14
i=0 fi(

−→x ),

−→u (−→x ) = 1
ρ(−→x )

∑14
i=0 fi(

−→x )−→e i,
(8)

It is well known that the stability of the LBM simu-
lation is affected by the relaxation time τ . The value of
τ should not be too close to 0.5 because of the use of a
linearized BGK collision operator [26]. Due to this lim-
itation, the standard Lattice Boltzmann method is only
suitable for flow at relatively low Reynolds numbers. At
high Reynolds numbers, it is necessary to incorporate a
turbulence module into the Lattice Boltzmann equation
(LBE). In this study, the Smagorinsky subgrid turbu-
lence module introduced by Feng [29] is employed. The
scales are divided into filtered and unresolved scales by
the filtering of the LBE based on the lattice size δx. The
LBE can be directly solved for filtered scales. An addi-
tional relaxation time τa is used to represent the effect of
motion at the unresolved scales [30]:

τtotal = τ + τa, (9)

where τtotal is the total relaxation time. τa is related to
the turbulence viscosity νa:

τa =
3δt
δ2x
νa, (10)

with the turbulence viscosity νa given by

νa = (Scδx)2Ŝ, (11)

where Sc is the Smagorinsky constant with a typical
value range between 0.1 and 0.2; and the magnitude of

the filtered strain-rate tensor Ŝ can be obtained from Q̃ij
- the second moment of the distribution function, i.e.,

Ŝ =

√
2
∑
i,j Q̃ijQ̃ij

2ρScτtotal
, (12)

with Q̃ij given by

Q̃ij =

14∑
k=0

ekiekj(fk − feqk ), (13)

where fk and feqk are the non-equilibrium distribution
function and equilibrium distribution function, respec-
tively.

B. Coupling approach for LBM and DEM particles

A coupling method for LBM and DEM was intro-
duced by Owen [21] for spheres. The immersed boundary
method [31] is adopted to model the interaction between
fluid and solid. The LBE is modified as:

fi(
−→x +−→e iδt, t+ δt) =fi(

−→x , t) +BnΩsi

+ (1−Bn)

[
δt

τ
(feqi − fi)

]
,

(14)

where Bn is a weighting function depending on the vol-
ume occupation fraction εn. Ωsi is an additional collision
term that accounts for the momentum exchange between
fluid and moving DEM particles. The bounce-back rule
is applied to the interface of fluid and solid. The form of
Ωsi proposed by Nobel [32] is used in this study:

Ωsi =

[
fi′(
−→x , t)− feqi′ (ρ,−→v p)

]
−
[
feqi (ρ,−→v p)fi′ − fi(−→x , t)

]
,

(15)

where the symbol i′ denotes the direction opposing the i
direction, and −→v p is the velocity of the DEM particle at
position x computed as:

−→v p = −→ω × (−→x −−→x c) +−→v c, (16)

where −→v c and −→ω are the translational velocity and angu-
lar velocity at the DEM particle’s centroid, respectively.
Several forms of the weight function Bn have been dis-
cussed in [29] and [32]; however, the differences of these
forms do not significantly affect the simulation results.
In this study, we apply Bn as given by [32]:

Bn(ε) =
εn(τ − 1/2)

(1− εn) + (τ − 1/2)
, (17)

The volume occupation fraction (εn) plays an important
role in the fluid-particles interaction. Three schemes of
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εn have been investigated in literatures [17, 21]: an ex-
act closed-form solution, cell decomposition and polygo-
nal approximations. Compared with the third one, the
first two schemes provide more accurate predictions [17].
However, their computational costs are high. The polyg-
onal approximation is the most efficient scheme but only
provides adequate accuracy for spheres and the εn value
for irregularly shaped particles may deviate greatly from
the exact value.

To resolve this problem, Galindo-Torres extended
Owen’s method by using the sphero-polyhedron tech-
nique [33–35]. A sphero-polyhedra is constructed follow-
ing two steps as shown in Figure 2: first, an original poly-
hedra is eroded by a distance of sphero-radius R; after
that, the eroded polyhedra is dilated by a sphere of the
same radius (R). The so-created sphero-polyhedra are
similar to the original ones but with rounded edges and
corners. Therefore, the interaction between the sphero-
polyhedra and LBM cells is smooth as in the case of
spheres. The volume occupation fraction εn can then
be calculated by an approximation method based on the
length of an edge occupied by solid particles, i.e.,

εn =

∑12
e=1 le

12δx
, (18)

where le is the length of the e-th edge occupied by solid
particles. More details can be found in [26], where the
equation was tested and demonstrated to perform as well
as other existing, most accurate methods for calculating
εn.

The total hydrodynamic force and torque over a par-
ticle covered by n cells can be calculated as:

−→
F =

δ3x
δt

∑
n

Bn

(∑
i

Ωsi
−→ei
)
, (19)

−→
T =

δ3x
δt

∑
n

[
(−→x −−→x c)×Bn

(∑
i

Ωsi
−→ei
)]
, (20)

erosion dilation

FIG. 2. A 3D sphero-cube: initially the cube is eroded or
shrunk by a distance equal to the sphere radius, and then is
dilated by the same sphere. After this morphological trans-
formation, the cube ends up having rounded corners [26] .

.

III. SHAPE FACTORS

The characteristics of general particle shapes can be
described by a number of shape factors. Five shape fac-
tors are considered in this work, namely: sphericity φ,
nominal diameter dn, surface-equivalent-sphere diame-
ter dA, circularity of the projected surface c and Corey
shape factor CSF .

The sphericity (φ) has been suggested as an appro-
priate single shape factor for isometric non-sphere parti-
cles [1, 2] and is defined as follows [36]:

φ =
Ssphere
S

(21)

with Ssphere being the surface area of volume-equivalent-
sphere and S is the surface area of the particle.

However, measurement of the particles surface area is
difficult in practice, especially for particles of irregular
shapes.

A widely used shape factor is the nominal diameter
dn defined as the diameter of the volume-equivalent-
sphere [36]. Another widely used diameter is the surface-
equivalent-sphere diameter,

dA =

√
4Ap
π

(22)

where Ap is the projected area of the particle.
The circularity of the projected area has also been ex-

amined [1] which is given by:

c =
πdA
Pp

(23)

where Pp is the perimeter of the particles projected area.
The Corey shape factor CSF [37] is directly related to

the sizes of the particle in three dimensions, as defined
by:

CSF =
ds√
didl

(24)

where dl, di and ds are the longest, intermediate, and
shortest particle axes lengths, respectively.

IV. VALIDATION

A. Settling of sphere

The settling of a sphere in a viscous fluid is simulated
to examine the dynamic behaviour of the sphere and as-
sociated fluid motion. The domain size is 6.6dn×6.6dn×
10.6dn. Ladd [23] suggested that the sphere’s diameter
dn should be larger than 9 LBM cells to ensure a suffi-
cient accuracy, and here we set dn = 30 LBM cells size,
which is equal to 15 mm in the physical unit. The sphere
is placed at a height of 8dn from the bottom. The par-
ticle’s density ρs is 1120 kg/m3; the fluid density ρf and
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FIG. 3. Comparison between simulated settling velocities and
experimental measurements for sphere particles during the
settling process.

the kinetic viscosity ν are set according to [12]. The
values of all the parameters used in the simulations are
listed in Table I. Wall boundary conditions are applied at
the boundaries. Note that in the simulations, the gravity
is only applied to the DEM particle and thus a relative
gravity given by (1 − ρf/ρs)g is used as suggested by
Feng [20].

The time series of simulated settling velocities are com-
pared to the experimental data presented in [12] for
Re = 1.5 and Re = 31.9 as shown in Figure 3. Also
plotted in the figure are predicted terminal settling ve-
locities based on an empirical drag coefficient formula
from [38]:

CD =
24

(9.06)2

(
9.06√
Re

+ 1

)2

, (25)

TABLE I. Parameter values used in and calculated from the
simulations in comparison with experimental data. us/ue is
the ratio of simulated terminal settling velocity to measured
value from physical experiments.

Re St ρf ν us/ue

[−] [−] [kg/m3] [m2/s] [−]

1.5 0.19 970 0.385 0.950

4.1 0.53 965 0.220 0.972

11.6 1.50 962 0.117 0.945

31.9 4.13 960 0.060 0.951

1 10 100

0.1

1

10

d
^

û

û = 





18

d
^

 2
+

2.3348 − 1.7439 φ

d
^

 0.5







 −1

Haider’s formula

Present simulation

FIG. 4. Comparison between our simulation settling velocity
and experiments for the sphere.

Overall the simulation results agree well with both the
experimental data and predictions of Eq. 25. The max-
imum velocities in both the simulation and experiment
are of slightly lower magnitudes than those predicted by
Eq. 25 because of the hindrance effect of the wall bound-
aries: particle motion affected by the additional resis-
tance due to the container walls. The ratio of simulated
terminal settling velocities to measured values from the
experiment(us/ue) is around 0.95 as given in Table I.
Similar results have been reported by [21, 26]. The model
slightly over-predicts CD when Re is less than 40. This
may linked to the form of the weighting function Bn used.

B. Settling of cube

Another simulation is performed for a cube of 20 LBM
cells (i.e., dn = 20 LBM cells size) with a sphero-radius
of 1 LBM cell size. The depth and width of the domain
are both 5dn but the height increases with the Reynolds
number from 16dn to 72dn. Re varies over the range
from 1 to 1200; for Re > 100, the cube always tends
to rotate during the settling process and thus the aver-
age terminal velocity is used for comparison. A previous
study by Haider[2] has developed a quantitative relation

between the dimensionless diameter d̂ and the dimension-
less terminal velocity û for non-spherical particles based
on experimental data:

û =

[
18

d̂2
+

2.3348− 1.7439φ

d̂0.5

]−1
(26)
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terminal settling velocity

0 1 2 3 4

− 1.5

− 1

− 0.5

0

Time ( × 10
4
 lu)

û
parallel

x − axis  45°

FIG. 5. Comparison of settling velocity between cubes re-
leased with different initial orientations: the edges of the cube
parallel to the container (blue solid line), and with a rotation
of 45◦ around the x axis (red dotted line). The viscosity
ν = 2.0× 10−5m2/s. The variations shown toward the end of
the simulation are due to the effect of the lower boundary.

where φ is the sphericity of the particle and

d̂ = dn

[
g(ρs − ρf )

ν2ρ2f

] 1
3

(27)

and

û = up

[
ρf

gν(ρs − ρf )

] 1
3

(28)

Figure 4 shows an excellent agreement between the re-
sults of this study and Haider’s predictions with the max-
imum difference of û lower than 3%. To determine the
influence of the particle’s initial orientation, a series of
simulations are performed with different rotations of the
cube. Although these simulations show different settling
patterns at the beginning, the settling of the cube in all
cases reaches the steady state with the same value of ter-
minal velocity for a given Re (see Figure 5).

V. SETTLING OF IRREGULAR SHAPED
PARTICLES

The irregularly shaped particles used in this study are
described by 3D polygon meshes. The advantages of
these meshes for the study are two-fold: firstly, they can
be used to describe bodies of any shapes with a sufficient
resolution; and secondly, compared with the method of
using a cluster of spheres to approximate general parti-
cle shapes, using a mesh can avoid flow passing through
the inside of particles since there is no void space within

the solid body. Seven particles with different geometrical
shapes are constructed as shown in Figure 6. The mesh
information and the shape factors of all the particles are
summarised in Table. II. Depending on the complexity
of the particle shape, the mesh size is varied to ensure
enough resolution. All particles have the same volumet-
ric mass density and the same volume of an equivalent
sphere of diameter dn = 13 lattice unit. Thus the grav-
ity force is the same for all the particles and hence the
only difference between these particles is their shapes.
The sphericity, circularity and Corey shape factor of the
particles vary from 0.5 to 1. The Re is controlled by
changing the viscosity. Four values of kinematic viscos-
ity ν are applied in the simulation: 2.0×10−4, 1.0×10−4,

Left view Right view Top view

(a) particle A

(b) particle B

(c) particle C

(d) particle D

(e) particle E

(f) particle F

(g) particle G

FIG. 6. Three views of the irregularly shaped particles inves-
tigated.
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TABLE II. Mesh information and shape factors of particles.

Particle Vertices Edges Faces Sphericity φ dA/dn Circularity c Corey factor Co

A 40 114 76 0.8215 1.3254 0.9204 0.797

B 46 132 88 0.9037 1.2577 0.9526 0.939

C 47 95 100 0.5923 1.4784 0.9009 0.875

D 96 290 196 0.6268 1.4148 0.7418 0.840

E 42 120 80 0.7083 1.5611 0.7485 0.446

F 28 78 52 0.7763 1.4875 0.8772 0.440

G 59 173 116 0.5352 1.5635 0.6182 0.667

1 10 100

1

10

100

Re

C
D

A

B

C

D

sphere

Eq. 29 A

Eq. 29 B

Eq. 29 C

Eq. 29 D

(a)Group 1

1 10 100

1

10

100

Re

C
D

E

F

G

sphere

equation 29 E

equation 29 F

equation 29 G

(b)Group 2

FIG. 7. Drag coefficient of irregularly shaped particles as a
function of the Reynolds number.

5.0× 10−5, 2.0× 10−5m2/s.

An experimental work has been presented by Tran-
Cong et al [1], who studied the drag coefficient of irregu-
larly shaped particles. Based on the experimental results,
they modified the drag coefficient formula of Clift et al [3]
to incorporate the shape effect:

FIG. 8. Cross sectional contour plot of fluid velocity field for
particle F at Re = 3.04. The colourmap shows the magnitude
of the fluid velocity.

CD =
24

Re

dA
dn

[
1 +

0.15√
c

(
dA
dn
Re

)0.687
]

+

0.42

(
dA
dn

)2

√
c

[
1 + 4.25× 104

(
dA
dn
Re

)−1.16] ,
(29)

The drag coefficient CD simulated in this study and
the results from Eq. 29 versus Re are plotted in Figure 7.
For comparison, the predictions for a volume-equivalent
sphere are also included. The particles are divided into
two groups based on whether their Corey factors (CSF )
are greater than 0.7 or not since different patterns of set-
tling are observed for these two groups of particles in
this study. For group 1, CD based on the simulation
results agrees well with Eq. 29 in the low range of Re;
however when Re > 20, the simulated values are slightly
higher and the difference increases with Re. Tran-Song
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FIG. 9. Time series of dimensionless settling velocities of
irregularly shaped particles simulated with different viscosity
values.

et al. [1] suggested that Eq. 29 is suitable in the range of
Re < 50 for tetrahedrons and Re < 200 for cubes. CD
should approach a constant when Re is close to Newton’s
regime which the settling behaviour is dominated by vor-
tices behind the particle. Also at high Re, the settling
behaviour may be affected by the wall boundary condi-
tion; and this effect can be reduced by increasing the
simulation domain size, which however would lengthen
the simulation time. Note that a periodic boundary con-
dition is not suitable at high Re, because of the wake
left behind the particle [19]. Compare with group 1, the
deviation of the simulation results for group two parti-
cles from Eq. 29 cannot be ignored even at low Re. CD
for all 7 irregularly shaped particles are higher than that
for the sphere. The highest CD is observed for particle
G, which has the lowest sphericity and circularity but
highest dA/dn. In contrast, particle B with the highest
sphericity circularity and lowest dA/dn has the smallest
value of CD.

For a given Re, CD for both group 1 and group 2 parti-
cles increases with dA/dn, consistent with the predictions
of Eq. 29. Figure 8 shows images of the flow field and
the motion of particle F for ν = 2.0× 10−4m2/s. At the
beginning, the plane of the particle’s maximum projected
area is parallel with the direction of the settling mo-
tion (maximum projection indicated by the white colour
in the first sub-figure on the left hand side); then the
particle starts rotating until the maximum cross-section
becomes normal to the direction of motion (minimum
projection on the plane parallel to the settling direction
shown in the last sub-figure on the right hand side).

Figure 9 shows the time series of settling velocities sim-
ulated with different viscosity values. The settling veloc-

ities are normalized as u∗ = up

[
( ρsρf −1)gdn

]− 1
2

[39]. The

results show that the terminal velocity increases with de-
creasing viscosity as expected. The settling dynamics
of the particles depend largely on Re. At low Re, the
settling of all particles reaches a terminal velocity under
the balance of drag and gravity forces after an initial ac-
celeration stage. Two different types of u∗ behaviours
can be observed: firstly an ‘accelerating’ behaviour for
group 1 with u∗ rapidly increasing initially but gradually
approaching a steady state and reaching the terminal ve-
locity; secondly an ‘accelerating-decelerating’ behaviour
for group 2. The second behaviour is characterised by an
overshoot of the settling velocity particles accelerated
with u∗ reaching a maximum value that exceeds the ter-
minal velocity and then decelerated to the steady state
condition given by the terminal velocity. The difference
may be linked to the ratio of the minimum projected area
to the maximum projected area (related to CSF ), which
is considerably lower than 1 (< 0.7) for group 2 parti-
cles. For these particles, the drag force as a function of
the projected area would be relatively small, permitting
the over-acceleration of particles.

Previous experimental results indicate that there is no
steady-state settling for irregularly shaped particles when
Re is higher than 100, unless they are released with the
maximum cross-section normal to the vertical axis in the
settling direction [1, 13, 14]. These particles tend to show
a spiral trajectory at high Re as they rotate around a
horizontal axis. The same phenomenon is observed in the
present simulations. Except for particle C, the settling
velocity of all particles fluctuates with time but around
a constant value. The terminal velocity increases with
decreasing viscosity. The motion of particles is strongly
affected by the horizontal force, different from the low
Re case where the horizontal force is very weak. The
exceptional behaviour of particle C will be discussed in
the following section.

From Eq. 3 it can be seen that the projected area plays
an important role in the settling process. Figure 10 shows
the x, y, and z component of the angular velocity, i.e., ωx,
ωy and ωz as well as the dimensionless projected area PA
for particle B, C, E and F. The dimensionless projected
area PA is define as the ratio of the projected area to πd2n
(projected area of a volume-equivalent sphere). In all the
cases, PA increases at the beginning, which means that
all the particles tend to adjust their orientations until
the maximum cross-section becomes normal to the set-
tling direction. At low Re, PA for most of the particles
reaches a constant after the acceleration stage. How-
ever, Figure 10(b) and Figure 10(c) shows that even af-
ter reaching the steady state, PA still changes with time.
This suggests that minor changes of the projected area
may persist but do not strongly affect the settling veloc-
ity at low Re. Because the particle moves with a layer of
water around it (Figure 8), if the thickness of the ‘water
shell’ is large enough, the settling velocity is not sensitive
to the rotation. The x and y component of the angular
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FIG. 10. Time series of projected area and angular velocities of particle B, C, E and F simulated with different viscosity values.

velocity (ωx and ωy) also increase at the beginning but
subsequently become very small, approaching zero. At
high Re, ωx and ωy as well as PA show periodic fluctu-
ations. The transition from the steady state behaviour
for low Re to this oscillating condition appears to occur
when Re is approximately equal to 100. The amplitudes
of the oscillations of ωx and ωy depend on Re. For the z
component of the angular velocity ωz, the value is always
near zero for all Re.

As shown in Figure 10(a) and Figure 10(b), the am-
plitudes of ωx and ωy are of the same order of magni-
tude for particles B and C. However, ωx and ωy differ
significantly for particles E and F (Figure 10(c) and Fig-
ure 10(d)). There appears to be a major rotating axis,
either x or y, for these particles with low CSF . Although

the amplitude of the larger component between ωx and
ωy decreases with time, its value does not reach zero, as
confirmed by additional simulations. A detailed discus-
sion of this persistent rotation is given in the next section.
The streamlines for particle A in cases with different Re
are plotted in Figure 11. The results show that vortexes
form and move away from the particle surface at high
Re. These vortexes are directly linked to the unsteady
behaviour of particles.

As mentioned above, the irregularly particles will ap-
proach an unsteady (oscillating) state when Re exceeds
100. To investigate the unsteady behaviour of par-
ticles, additional simulations with an increased height
of the domain are performed for ν = 2.0 × 10−5 and
1.0×10−5m2/s, which correspond to Re of approximately
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(a)ν = 2.0× 10−4m2/s (b)ν = 2.0× 10−5m2/s

FIG. 11. Streamlines of particle A simulated with two viscos-
ity values: the seeds of streamlines are set around the particle
and with equal spacing between each other.

100 and 200, respectively. Figure 12 shows clearly the pe-
riodic oscillations of the angular velocity around zero. As
PA is directly controlled by the angular velocity, it also
fluctuates around a mean value after undergoing a rela-
tively rapid increase at the beginning. The amplitudes of
ωx and ωy increase with Re; however, the oscillation fre-
quency is not sensitive to Re. When the particles move
close to the bottom in the case with Re = 200, two differ-
ent trends of the angular velocity are found: for particle
B and E, the amplitudes of ωx and ωy tend to decrease,
while the opposite occur for particle C and F. The cause
of the different trends requires further investigation.

In a previous experimental study, the dynamical
behaviours of thin disks were characterised as being
‘steady’, ‘periodic’ and ‘chaotic’ or ‘tumbling’. These
behaviours depend on the moment of disk inertia and
Re [13]. In the present study, we observe ‘steady’ and ‘pe-
riodic’ behaviours of irregularly shaped particles within
the range of Re examined. Figure 13 shows the phase
diagram. It should be pointed out that for thin disks
only one moment of inertia is necessary because the nor-
mal one In can be ignored. For the case of particles of
general shapes, the moment of inertia I should be con-
sidered as a tensor. Moreover, I is not a constant in the
static Cartesian coordinates during settling and thus the
eigenvalues (Ii) of the tensor are used to characterize the
unsteady behaviour of particles. We note that the tran-
sition between ‘steady’ and ‘periodic’ behaviours occurs
in the range of 80 < Re < 300 and the critical Re is a
function of I. A boundary separating the two behaviours
may be found only on the phase diagram based on the
maximum eigenvalue Imax and Re. It is interesting that
the curve of this boundary appears to have a similar ge-
ometric feature to that for thin disks. The overlap for
the medium and minimum eigenvalues (Imid and Imin)

implies that Imax play the major role. One may note
that the moment of inertia used in [13] is Imin; however
Imax would have given the same results as Imax = 2Imin
for thin disks.

VI. CONCLUDING REMARKS

We have investigated the settling dynamics of sin-
gle particles of complex, irregular shapes in a still fluid
through simulations using a coupled Discrete Element-
Lattice Boltzmann model. This model was first validated
with experimental results for spheres conducted by Cate
et al.[12] and for cubes carried out by Haider[2] under
conditions of moderate Reynolds numbers. Seven irregu-
larly shaped particles were constructed using 3D polyg-
onal meshes with the same volume. The simulated set-
tling velocity and drag coefficient for these particles were
found to be in a reasonably good agreement with predic-
tions by the formula of Tran-Cong et al. [1] for particles
with CSF < 0.7 at Re < 20. However, the simulation
results deviated significantly from the predictions of the
existing formula as Re increases beyond 20.

The particle shapes not only affect the terminal set-
tling velocity, but also the dynamic settling process.
When Re is lower than 100, the settling of the par-
ticles reaches a steady-state through different transient
processes depending on the particle shape. Particles of
shapes with Corey factors larger than 0.7 get acceler-
ated to the terminal velocity. Particles of shapes with
Corey factors less than 0.7 go through an accelerating-
decelerating with u∗ increased to a maximum settling ve-
locity exceeding the terminal velocity and subsequently
decreased back to the terminal velocity.

When Re is higher than 100, the time series of the par-
ticle angular velocities and projected areas show a peri-
odically oscillating behaviour for all the seven particles.
The component of angular velocity normal to the settling
direction was found to be unimportant as it does not af-
fect the projected area. The simulation results showed
that the oscillation amplitude of the particle angular ve-
locity in the transverse directions increases with Re; how-
ever the frequency of the oscillation is not sensitive to Re.

The transition between ‘steady’ and ‘periodically os-
cillating’ behaviours of the simulated irregularly shaped
particles depends on a critical Re, consistent with previ-
ous research findings [1, 16]. However, this study showed
that the dynamic behaviours of irregularly shaped parti-
cles are also related to the inertia tensor I. In particular,
the maximum eigenvalue of the inertia tensor (Imax) ap-
pears to play a major role in determining the steady or
periodically oscillating behaviour of particles.

The present study has shown important effects of irreg-
ular shapes on the settling dynamics of particles. Future
studies are required to examine how dimensionless pa-
rameters such as Re and CD can be combined with shape
factors to develop a unified theoretical framework for
quantifying the behaviours of particles of general shapes.
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FIG. 12. Time series of projected areas and angular velocities of particle B, C, E and F simulated with different viscosity values
and an increased height of the domain.
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FIG. 13. Phase diagram: the settling behaviour of irregularly particles as a function of Reynolds number Re and maximum
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The Discrete Element and Lattice Boltzmann Method
again can offer an effective simulation approach to pro-
duce data for elucidating the form of these dimensionless
parameters and their relationships.
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