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Abstract: Hydro-fracturing is an important technique in petroleum industry to 
stimulate well production. Yet the mechanism of induced fracture growth is still not 
fully understood, which results in some unsatisfactory wells even with 
hydro-fracturing treatments. In this work we establish a more accurate numerical 
framework for hydro-mechanical coupling, where the solid deformation and 
fracturing are modeled by discrete element method (DEM) and the fluid flow is 
simulated directly by lattice Boltzmann method (LBM) at pore scale. After validations, 
hydro-fracturing is simulated with consideration on the strength heterogeneity effects 
on fracture geometry and micro failure mechanism. A modified topological index is 
proposed to quantify the complexity of fracture geometry. The results show that 
strength heterogeneity has a significant influence on hydro-fracturing. In 
heterogeneous samples, the fracturing behavior is crack nucleation around the tip of 
fracture and connection of it to the main fracture, which is usually accompanied by 
shear failure. However, in homogeneous ones the fracture growth is achieved by the 
continuous expansion of the crack, where the tensile failure often dominates. It is the 
fracturing behavior that makes the fracture geometry in heterogeneous samples is 
much more complex than that in homogeneous ones. In addition, higher pore pressure 
leads to more shear failure events for both heterogeneous and homogeneous samples. 
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1. Introduction  
Hydraulic fracturing is one of primary engineering techniques to improve well 
productivity especially for unconventional energy reservoirs[Economides and Nolte, 
2000]. In this process, fluid is pumped into the well, and artificial fracture is induced 
in the formation by high fluid pressure[Veatch Jr and Moschovidis, 1986]. However 
as a routine operation to stimulate reservoirs, besides many successes there still exist 
some wells which productions are unsatisfactory even with hydro-fracturing[Qiu et al., 
2013; Rahman and Rahman, 2010; Zhou et al., 2014]. The main reason for this lack 
of predictability is that the mechanics of crack initiation and propagation during 
hydraulic fracturing is still not completely understood[Gou et al., 2015; T Wang et al., 
2014].  
 
In the past few decades, a large number of numerical analysis techniques have been 
applied to study hydraulic fracturing and try to understand its underlying 
physics[Adachi et al., 2007; Barbati et al., 2016; Detournay, 2016]. However, how to 
develop an accurate and comprehensive numerical model is still a challenging 
research topic[Adachi et al., 2007], although it is of great importance for both 
hydro-mechanical coupled theory and hydro-fracturing practice. This complexity 
arises from two aspects, complex geologic reality (heterogeneity and anisotropy etc.) 
and inherent coupled multi-physics process[Economides and Nolte, 2000], including 
solid deformation, fracture propagation, fluid flow in fracture/matrix and their 
exchange[Kovalyshen, 2010].  
 
Generally, there are mainly two kinds of models for hydro-fracturing simulation, 
continuum-based models and discontinuum-based models. In continuum-based 
models, the governing equations based on continuum theory (including elasticity 
equation, fluid flow equation and fracture growth equation) are solved analytically or 
numerically [Adachi et al., 2007]. It began with simplified theoretical models in 
1950s such as KGD and PKN model [Geertsma and De Klerk, 1969; Nordgren, 1972]. 
After that some variations of KGD and PKN model were developed[Yew and Weng, 
2014] including pseudo-3D (P3D) model a semi-analytical model, planar 3D (PL3D) 
models and fully 3D models[Zhou and Hou, 2013] where the fracture propagation and 
fluid flow in fracture were solved numerically in 2D or 3D meshes 
respectively[Adachi et al., 2007].  
 
Although the above continuum-based models are routinely applied in the design of 
hydro-fracturing treatment[Zhou and Hou, 2013], they are phenomenological and 
without detailed attention to the fundamentally physical significance[Thallak et al., 
1991]. In addition, some predictions by the continuum-based model are not consistent 
with the results obtained from the experiment[Al-Busaidi et al., 2005]. Firstly, various 
types of fracture geometry are measured with microseismic mapping ranging from 
single planar fracture to complex fracture network, and only complex fracture 
network is desirable in “super-tight” reservoirs[Mayerhofer et al., 2010]. However, 
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the complexity of the fracture geometry is difficult to be predicted by the 
continuum-based model owing to its single planar fracture assumption[T Wang et al., 
2014]. Secondly, the continuum-based model generally assumes that the failure mode 
in hydraulic fracturing is the tensile failure, but shear-type seismic events are often 
recorded in experiments and even in some cases shear failure dominates the fracturing 
behavior[Falls et al., 1992; Tsuyoshi Ishida et al., 2004].  
 
As an alternative, discontinuum-based models based on discrete element method 
(DEM) were developed to explore what happened in hydro-fracturing at micro 
scale[Al-Busaidi et al., 2005; Bruno et al., 2001; Lisjak et al., 2015; Sheng et al., 
2015]. In DEM, the rock is regarded as an assembly of bonded particles, which 
captures the discrete nature of rock effectively and allows for an explicit simulation of 
the crack nucleation and coalescence. In order to solve the fluid flow in rock, different 
fluid dynamics modeling methods have been applied to combine hydro-mechanical 
coupled models with DEM. The first type of models are coarse grid methods[Furtney 
et al., 2013], where the continuum flow is calculated by solving the Darcy’s 
law[Bruno et al., 2001] or average NS equations[Eshiet et al., 2013] on the grid larger 
than the DEM particle. Due to the inconsistent scale for fluid and solid phase in 
coarse grid methods, empirical formulas are always needed. Another popular type is 
DEM/pore network coupled model, which has been used to study hydro-fracturing 
recently and achieved some success[Al-Busaidi et al., 2005; Hazzard et al., 2002; 
Shimizu et al., 2011]. With simplifications of solid structure (pore and throat) and 
fluid flow (Poiseuille equation), DEM/pore network model can provide fluid field 
information at particle scale. However, when the rock breaks up seriously or the void 
geometry changes dramatically, it is quite difficult to distinguish pore and throat from 
the DEM structure [Furtney et al., 2013] and the assumption of a same pore pressure 
value in the fracture is not valid anymore [Ni et al., 2015]. Thus, Ni et al. [2015] 
simulated hydraulic fracturing with a more accurate pore-scale DEM-CFD coupled 
model, but it is computationally expensive due to re-meshing at each time step.  
 
In the past three decades, the lattice Boltzmann method (LBM) has gained much 
popularity owing to its efficiency in dealing with complex-boundary. Recently, it has 
been coupled with DEM to study hydro-mechanical problems in geophysics such as 
sand production[Boutt et al., 2011; Z Chen et al., 2016]. In LBM-DEM model, fluid 
flow and fluid-solid interaction are simulated directly and efficiently at pore scale 
without adjustable parameters[Boutt et al., 2011]. However, only a few LBM-DEM 
models are applied to simulate hydraulic fracturing, although it is necessary to reveal 
the mechanism involved.  
 
Strength heterogeneity is a common feature in nature rock owing to the pre-existing 
weak joints, cracks or flaws, which greatly affects the fracture processes and macro 
mechanical properties[Ma et al., 2014; Ma et al., 2011; Tang et al., 2000], but the role 
of strength heterogeneity in hydraulic fracturing process has not been fully explored 
especially quantitatively. In this work, LBM and DEM are coupled to simulate 
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hydraulic fracturing at pore scale, and the effects of strength heterogeneity on fracture 
complexity and micro failure mechanism are investigated. We try to bridge the gap 
with a more accurate coupled model, which may help us understand the conflict of 
failure mode between continuum model prediction and experimental data. 
 

2. Numerical methods and validations  

This section gives a brief introduction of numerical methods used in current 
simulation including lattice Boltzmann method (LBM), discrete element method 
(DEM) and the LBM-DEM coupling method immersed moving boundary (IMB). 
Then the LBM-DEM coupled scheme is validated by sphere sedimentation cases. 

2.1 Lattice Boltzmann method (LBM) 

Lattice Boltzmann method (LBM) is an efficient numerical method to simulate fluid 
flow, heat and mass transfer especially with complicated boundary condition and 
multiphase interfaces[M Wang et al., 2007; Z Wang et al., 2016; L Zhang and Wang, 
2015]. Recently, LBM has been also widely used to simulate fluid-solid coupling 
system owing to its high accuracy and efficiency[Boutt et al., 2011; Y Chen et al., 
2013; Y Chen et al., 2015; Z Chen et al., 2016].  
 
In LBM, the Boltzmann equation is solved in the discrete lattices, and the obtained 
macroscopic parameters (velocity, pressure etc.) obey the desired governing equations 
(such as NS equations) by the Chapman-Enskog expansion[Succi, 2001]. A 
widespread LBM implementation is the lattice Bhatnagar-Gross-Krook (LBGK) 
model, where the collision operator is simplified as a linearized version[S Chen and 
Doolen, 1998] and the evolution equation is written as 

( ) ( ) ( ) ( )( )1, , , , , 0 14eq
i t t i i if t f t f t f t iδ δ

t
+ + = − − = −ix e x x x ,            (1) 

where x denotes the position vector, if  is the density distribution in the i-th lattice 
discrete velocity direction ie , eq

if  the corresponding equilibrium distribution, tδ  

the time step, τ  the dimensionless relaxation time related to the fluid kinematic 
viscosity 

( ) 21 2
3

x

t

t δ
ν

δ
−

= ,                           (2) 

where xδ  is the lattice size. In current simulation, a three-dimensional fifteen-speed 
model (D3Q15) is applied, which is one of standard and representative models for 
three-dimensional flows [Qian et al., 1992; M Wang and Chen, 2007]. “D3” indicates 
three dimension in space and “Q15” means that the density distribution has 15 
discrete velocity directions (see Figure 1). In the D3Q15 model, the discrete velocities 
are  
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where x tc δ δ= . The equilibrium distribution for D3Q15 model is given as 
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where the weighting factors are 
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.                       (5) 

After evolution, the macroscopic density and velocity can be calculated by 
,i

i
fρ =∑                             (6) 

i
i

fρ =∑ iu e ,                           (7) 

and the pressure (p) is given by[S Chen and Doolen, 1998] 
21

3
p cρ= .                            (8) 

 
Figure 1. The lattice direction system for D3Q15 model  

2.2 Discrete element method (DEM) 

Discrete element method (DEM) was proposed in 1979[Cundall and Strack, 1979] 
and has achieved great success in simulating dynamic behavior of brittle material such 
as rock. In order to overcome the shape limitation of round particles, the 
spheropolyhedra method is used in current simulation, where the rock is regarded as 
an assembly of angular particles[Galindo-Torres et al., 2012], and the current DEM 
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algorithm is based on the MechSys open source library.  
 
To model bonding, cohesive forces are assumed at the common face shared by two 
adjacent particles, which are given by 

cohe
n n
cohe
t t

M A
M A

e
e

 =


=

cohe
n

cohe
t

F n
F t

,                         (9) 

where cohe
nF  and cohe

tF  are cohesive forces in normal and tangential directions 
respectively, A the shared face area, cohe

nM  and cohe
tM  the normal and tangential 

elastic modulus of assumed “bond” material, εn and εt the normal and tangential 
strains of two adjacent particle faces, n and t the unit vectors in normal and tangential 
directions. When the relative displacements of two adjacent faces reach the threshold 
value εth 

1n t

th

εε
ε
+

> ,                        (10) 

the bond will be broken and a small crack forms. In this simulation, the broken bonds 
are classified as shear failure ( t nεε > ) and tensile failure ( t nεε < ), similar to the 
classification in [Shimizu et al., 2011]. 
 
Besides cohesive forces, another kind of interaction forces are contact forces caused 
by particle collisions, which are modeled by the normal and shear spring[Cundall and 
Strack, 1979]. Normal cont

nF  and tangential cont
tF  contact forces are proportional to 

the overlapping lengths in respective directions 

n n

t t

K l
K l

 = ∆


= ∆

cont
n

cont
t

F n
F t

,                       (11) 

where Kn and Kt are normal and tangential spring stiffness, nl∆  and tl∆  the 
overlapping lengths in normal and tangential directions, n and t same as that in Eq. 9. 
When ,cont cont

t fric nF Fµ>  the tangential force becomes cont
fric nF ,µ=cont

tF t where fricµ  
the particle friction coefficient, cont

tF  and cont
nF  are the magnitude of vector cont

tF  
and cont

nF . More detail about spheropolyhedra method for DEM simulation can be 
found in[Galindo-Torres et al., 2012]. 

2.3  LBM-DEM coupling scheme 

For hydro-mechanical coupled model, two aspects must be considered. Firstly, the 
no-slip boundary condition should be satisfied at the fluid-solid interface. Secondly, 
hydrodynamic force applied to solid phase need be calculated owing to fluid-solid 
interaction. In current LBM-DEM model, the immersed moving boundary (IMB) 
[Noble and Torczynski, 1998] is used to deal with fluid-solid interaction, which offers 
resolution at the sub-grid scale and allows for accurate and stable calculation of 
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hydrodynamic force [Strack and Cook, 2007]. In IMB, the volume fraction occupied 
by solid in each cell, namely γ whose value is within [0,1], is obtained, and a 
fluid-solid interaction term, S

iΩ , is introduced in the evolution equation 

( ) ( ) ( ) ( ) ( )( )1, , 1 , ,eq s
i t t i i i if t f t B f t f t Bδ δ

t
+ + = − − − + Ωix e x x x .  (12) 

The fluid-solid interaction term S
iΩ  is derived by the bounce-back for 

non-equilibrium part  

( ) ( ) ( ) ( ), , , ,s eq eq
i i i p i i pf t f f t fρ ρ− −

   Ω = − − −   x v x v ,          (13) 

where vp is the solid velocity at position x. In Eq. 12, B is a weight function depending 
on γ in each cell 

( )
( ) ( )

0.5
1 0.5

B
γ τ
γ τ

−
=

− + −
.                     (14) 

When γ=0, B=0; and γ=1, B=1. It means that the evolution equation (Eq. 12) can 
recover the standard LB equation and bounce-back rule for γ=0 and 1, respectively.  
 
The hydrodynamic force exerted on the DEM particle is calculated by the change of 
momentum in all cells covered by the particle  

3
sx

n i i
n it

Bδ
δ

 Ω 
 

∑ ∑F = e ,                   (15) 

where n is the number of cells covered by the DEM particle. The torque T can be 
calculated similarly 

( )
3

sx
n cm n i i

n it

Bδ
δ

  − Ω  
  

∑ ∑T = x x e ,              (16) 

where xn is the cell position, and xcm is the mass center of the DEM particle. 

2.4 Validations 

To validate the current LBM-DEM scheme for fluid-solid coupling problems, two 
benchmark cases are considered, single-sphere sedimentation and two-sphere 
sedimentation. Because results of direct numerical simulations for sphere 
sedimentations have been presented in many previous papers using FEM or other 
methods [Y Chen et al., 2015; Glowinski et al., 2001; Sharma and Patankar, 2005; 
Strack and Cook, 2007], there is sufficient data available for validation.  

2.4.1  Single-sphere sedimentation 

For a single offset sphere settling down in a column of fluid, it will oscillate around 
the centerline of the column with decreasing amplitude[Strack and Cook, 2007]. 
Eventually, a fixed settling velocity is achieved with no lateral motion. Based on this 
velocity, the terminal particle Reynolds number is calculated 
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Re ud
ν

= ,                            (17) 

where u is sphere terminal velocity, d the sphere diameter, and ν is the kinematic 
viscosity. 
 
For comparison, the channel and sphere geometry are set as same as that in [Strack 
and Cook, 2007]. A sphere with diameter d is placed in a square channel L L×  wide 
and 16 L deep ( 3 2L d= ). The initial sphere position is 0.4 L from the side of column 
in x direction (see Figure 2a). By adjusting the value of gravity, different terminal 
particle Reynolds can be achieved. In this case Re=15, the sphere trajectories obtained 
by present LBM-DEM model agree well with that in [Strack and Cook, 2007]. 
 

 
Figure 2. (a) The geometry of single sphere sedimentation benchmark case, where a sphere 
(d=2/3 L) is placed in 0.4 L from the side of column in x direction. (b) The trajectory of 
sphere in current simulation agrees well with that in [Strack and Cook, 2007]. 

2.4.2  Two-sphere sedimentation 

When two separated spheres settle down at zero initial velocity (see Figure 3), a 
famous phenomenon so-called “drafting, kissing and tumbling” or DKT motion will 
occur[Fortes et al., 1987]. “Drafting” in this process means the trailing sphere will 
accelerate due to the low pressure in the wake of the leading one. Then it catches the 
leading sphere, and “kissing” motion happens. Owing to the instability of contacting 
spheres aligned in the settling direction, they tend to “tumble” to another position. As 
a result, the relative position of two spheres exchanges and the initial trailing sphere 
becomes the leading one. 
 
We also simulate this process for further validation, where two spheres with density 
1.14 g/cm3 and radius 0.083 cm settle down under gravity in a column with square 
cross section 1 1cm cm×  and 4 cm depth (see Figure 3a). The centers of two spheres 
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are located at (0.5 cm 0.5 cm 3.4 cm) and (0.5 cm 0.5 cm 3.16 cm) initially. The fluid 
kinematic viscosity is 0.01 m2/s and density is 1 g/cm3. The same case was also 
modeled in [Glowinski et al., 2001] using FEM and [Sharma and Patankar, 2005] 
with FVM. 
 
Figure 3b shows the vertical positions of two spheres during the sedimentation 
process, and up to the “kissing” stage, our results agree well with that in[Glowinski et 
al., 2001; Sharma and Patankar, 2005]. After the kissing stage, exact agreement is not 
expected, because the “tumbling” is the realization of an instability, and different 
particles collision models will lead to different motions after “kissing”[Glowinski et 
al., 2001; Sharma and Patankar, 2005].  
 
 

 
Figure 3. (a) The geometry of two spheres sedimentation benchmark case, where two spheres 
with radius 0.083 cm settle down under gravity in a square channel with cross section 
1 1cm cm×  and depth 4 cm. (b) The vertical positions of two spheres during sedimentation 
process obtained from different simulations, and our results agree well with others. 
 

3. Hydro-fracturing simulation   

3.1 Physical Model and Modeling Parameters 

The rock sample in current hydro-fracturing simulation is presented in Figure 4a, 
where a hole is set at the middle of the left edge for fluid injection. For 
hydro-fracturing simulation, the rock sample is firstly discretized as an assembly of 
triangular solid particles (see Figure 4c). To simulate the flow behavior in the rock, 
the triangular particles in Figure 4c are eroded by a small distance to obtain the “flow 
channel” (see Figure 4d), which is a common numerical approach to deal with 
fluid-solid coupling process[Boutt et al., 2011; Shimizu et al., 2011]. In Figure 4d, the 
triangular particle is regarded as impermeable, and the fluid can only flow along the 
triangular grain boundary namely “flow channel”, which provides the primary 
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permeability for the rock matrix just like [Boutt et al., 2011] for sand production 
simulation. This idealization can be thought of two triangular particles in Figure 4d 
being separated by a virtual bond beam, which supports particles interaction force and 
is permeable to fluid. Current model is a pseudo-2D model for the sake of simplicity 
and computation time, and only one layer of particles are considered, but it can be 
extended to fully 3D case without difficulty. 

 

Figure 4. Physical model and computational system for simulations. (a) The rock sample used 
for hydro-fracturing simulation, where a hole is set in the middle part of left edge for fluid 
injection. (b) Discretization of rock sample by triangular particles with same thickness in 
DEM. (c) The 2D projection diagram from thickness direction. (d) Two triangular DEM 
particles are bonded together by virtual bond beam, which serves as the flow channel for 
fluid. 

3.1.1 Fracture dependent flow conductivity 

For fluid flow in deforming fractured rocks, an important character is the 
fracture-controlled fluid flow[Latham et al., 2013; Nick et al., 2011; Yardley, 1983; X 
Zhang et al., 2002], which means new formed cracks are much more permeable than 
the matrix primary permeability. If a connected fracture is formed, it will dominate 
the flow behavior in the rock[X Zhang et al., 2002]. Thus the crack propagation and 
the fluid flow is a strong two-way coupling process. However, previous LBM-DEM 
schemes did not consider this effect, and when the bond was broken, the flow 
conductivity did not change at all.  
 
In order to capture this feature, immersed moving boundary (IMB) is also introduced 
in the “flow channel”. When the bond is intact, an initial volume fraction (γ <1) is 
set for the LBM cells in the “flow channel”, which means the “flow channel” is partly 
occupied by the virtual stationary solid, corresponding to a low flow conductivity. By 
changing the initial value of γ, different rock matrix permeability can be achieved, 
and larger γ results in lower rock primary permeability. During the hydro-fracturing 
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simulation, the γ of LBM cells in smaller triangular particles (see Figure 4d) is 
updated at each time step by calculating the volume fraction occupied by solid. The 
γ of LBM cells in the “flow channel” keeps the initial constant value as long as the 
bond is intact. When the bond is broken (new crack forming), γ in the corresponding 
“flow channel” is set to 0, which means flow resistance caused by virtual stationary 
solid is removed by the formation of crack. As a result, the flow conductivity 
enhanced by fracture can be captured effectively.  

3.1.2 Characterization of strength heterogeneity 

Strength heterogeneity is a common feature in rock material and can be quantitatively 
evaluated by Weibull distribution[McClintock and Zaverl Jr, 1979; Rossi and Richer, 
1987]. In current model, the strength heterogeneity of the sample is achieved 
numerically by setting bonding strength threshold (εth) in a random manner following 
the Weibull distribution 

( )
1

0 0 0exp
m m

th th
th

th th th

mf e ee
e e e

−     
 = −        

,                 (18) 

which is a common approach to represent the strength heterogeneity in geo-materials, 
and has obtained some satisfactory simulation results and good consistency with 
experiments[Mahabadi et al., 2014; Zhu and Bruhns, 2008]. However, it should be 
noticed that the two parameters in the Weibull function need to be determined 
statistically case by case for different kinds of rocks. In Eq. 18, 0

thε  is the average 
bonding strength threshold, and m>0 is the shape parameter describing the dispersion 
degree of thε . With increasing m, the generated data ( thε ) are more concentrated. 
Hence, in previous study m was often used to quantify the heterogeneity degree[Ma et 
al., 2011], but it is not intuitive owing to the nonlinear relation between m and 
heterogeneity degree. In this work, a heterogeneity index hs is suggested to quantify 
the strength heterogeneity, whose value equals the relative standard 
deviation/coefficient of variation of Weibull distribution with shape parameter m  

( )
( ) ( )( )2

1 1

1 2 1 1
std

s
mean

m
h

E m m

s Γ +
= =

Γ + − Γ +
,                (19) 

where Г is gamma function, stds  the standard deviation, meanE  the mean value. As 
expected, heterogeneity index hs only depends on the shape parameter m as shown in 
Figure 5a. For all m>1, hs is between 1 and 0. When m=1, hs=1 corresponding to a 
high degree of heterogeneity. With increasing m, hs decreases rapidly initially and 
then slows down (see Figure 5a). When , 0sm h→∞ → , and completely 
concentrated data are generated with no heterogeneity. Consequently, hs gives an 
intuitive and general quantification of heterogeneity degree and can also be extended 
to other distributions.  

11 
 



 
Figure 5. Weibull distribution of bonding strength threshold in current model. (a) The 
variation of heterogeneity index hs with shape parameter m, when m=1, hs=1; and for all m>1, 
hs is between 0 and 1. (b) The values of bonding strength in current four samples with 
different degrees of strength heterogeneity(m=2,5,10 and 30). 
 

3.1.3 Boundary conditions 

The computation domain with thickness ht and boundary conditions are presented in 
Figure 6, where a pre-existing crack is set near the injection hole to guide the 
subsequent fracture propagation. The y-axis symmetric boundary condition is set for 
DEM particles near to the left edge of computation domain, which means that they are 
fixed in x direction and can only move in y direction. Tectonic stresses are not 
considered in this model (no geo-stress difference), so the current result corresponds 
to the unconfined case or the situation where tectonic stresses are same in x and y 
direction.  
 

 

Figure 6. The computation domain and boundary conditions for hydro-fracturing simulation, 
the left edge is set as a symmetric boundary and a pre-existing crack is set to guide the 
subsequent fracture propagation. 
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The current DEM parameters summarized in Table 1 are chosen with the 
consideration of computation expense, and no attempt was made to match exact 
macro-mechanical properties of the real rock. We may be allowed to do this, because 
our present objective is to show the significant effects of strength heterogeneity on 
hydro-fracturing with a more accurate hydro-mechanical coupled model, and the 
results are not influenced by the specific macro properties. To explore the effect of 
strength heterogeneity, we prepare four kinds of samples with different heterogeneity 
degrees, whose average bonding strength threshold 0

thε =0.01 and heterogeneity index 
hs=0.52, 0.23, 0.12 and 0.04 (m=2, 5, 10 and 30), respectively (see Figure 5b). In this 
simulation, 503 triangular elements and 659 contact elements are used, which are 
considered sufficient to represent the Weibull distribution[Rossi and Richer, 
1987].The discussion on the mesh-independence of current simulation results is 
provided in Appendix II. 
 

Table 1. DEM parameters in current model 

Parameter Value 
Normal stiffness, Kn 52.1 10 N m×   

Tangential stiffness, Kt 51.4 10 N m×  
Particle friction coefficient, μfric 0.4 
Average bonding strength, 0

thε  0.01 
Solid particle density, sρ  3 35.0 10 kg m×   

Normal elastic modulus, cohe
nM  61.75 10 Pa×   

Tangential elastic modulus, cohe
tM  61.75 10 Pa×  

Particle thickness, ht 4.8 mm 
 
To induce hydraulic fracture, a constant high injection pressure is applied initially at 
the left side of the hole (the middle of the left vertical edge), and a low fluid pressure 
is kept at the right edge. It is a common fluid boundary condition for hydro-fracturing 
simulation, because the constant injection pressure was preferred over the constant 
flow rate in experiments[Al-Busaidi et al., 2005]. The bottom and top edges are no 
flux boundary conditions for fluid. The fluid parameters and their implementation in 
LBM are listed in Table 2. Here the D3Q15 model is used, and the lattice size xδ  is 

44.0 10 m−× , and the 3D lattice number is 500 400 12× × . The time step tδ  in LBM 
and DEM are same and equal to 61.33 10 s−× , which corresponds to a relatively high 
lattice velocity, so the deleterious compressibility can be annihilated. The width of 
“flow channel” (see Figure 6) in current simulation is 2.4 mm. In order to get a more 
general conclusion, four inlet pressures are considered ( in outP P− =120, 180, 240 or 
300 kPa), which are all high to induce fracture but low enough to maintain stability. 
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Table 2. Fluid parameters and their LBM implementation 

Parameter Value 
Fluid density, fρ  331 10 kg m×   

Fluid kinematic viscosity, ν 3 22.0 10 m s−×   
Grid size in LBM, xδ  44.0 10 m−×   

Time step in LBM and DEM, tδ  61.33 10 s−×   
Channel initial solid volume fraction, γ 0.8 

 

3.2 Results and Discussion 

The present numerical modeling results will be compared with the available 
experimental data and the fracturing mechanism will be discussed in this sub-section. 
Firstly, the strength heterogeneity effect on fracture geometry is presented, which 
shows how the rock mass property influences the hydraulic fracture. Then in order to 
explain this heterogeneity effect, fracturing behavior and micro failure mechanism are 
investigated at micro scale. Finally, the quantitative descriptions of fracture geometry 
and failure mechanism under various pressure differences are presented, which helps 
to provide a comprehensive understanding of the heterogeneity effect on 
hydro-fracturing. 

3.2.1 Validation of pressure evolution  

Before exploring the strength heterogeneity effect, current model is further validated 
by recording the pressure evolution in the hole. The physical model is same as that in 
Figure 6, and the fixed velocity and pressure boundary conditions are applied to the 
inlet and outlet of the computation domain, respectively. The pressure in the hole (red 
point in Figure 6 (1.75 cm, 8.0 cm)) is recorded during the simulation, and the 
evolution of dimensionless pressure increment in this point is plotted in Figure 7 
(normalized by the maximal pressure increment). It is presented that current 
LBM-DEM model successfully captures the pressure fluctuation during the fracture 
propagation (see Figure 7a), a typical pressure behavior in hydraulic fracturing tests, 
which is very consistent with the measured data from experiments [Cornet and Valette, 
1984; Economides and Nolte, 2000]. It is because our model introduces the fracture 
dependent flow conductivity. When the flow conductivity becomes fracture 
independent, like the previous LBM-DEM models did, the pressure response with 
time becomes monotonically increasing, as shown in Figure 7b, which is consistent 
with the previous LBM-DEM modeling results. Hence, the current model is available 
to be further used to study the heterogeneity effect on hydro-fracturing.  
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Figure 7. Pressure evolution curve by different methods. (a) Pressure evolution in current 
model where the flow conductivity enhanced by new fracture is considered. It captures the 
pressure fluctuation owing to crack propagation, a typical feature in hydro-fracturing test, and 
consistent with the measured data from experiments [Cornet and Valette, 1984; Economides 
and Nolte, 2000]. (b) The pressure evolution predicted when the flow conductivity becomes 
fracture independent like in previous LBM-DEM scheme, which fails to capture this behavior. 

3.2.2 Strength heterogeneity effect on hydro-fracturing 

In hydro-fracturing operation, fracture geometry is an essential parameter to evaluate 
its efficiency[Mayerhofer et al., 2010]. In the conventional reservoir, simple fracture 
such as single plane fracture is enough, but for an unconventional reservoir only a 
complex fracture network can improve its production[Mayerhofer et al., 2010]. 
Consequently it is of great necessary to explore the relationship between rock mass 
properties and the hydraulic fracture geometry, so that we can predict what kind of 
fracture geometry tends to be generated in a specific reservoir. Recently, some rock 
properties such as brittleness[Chong et al., 2010] and geologic discontinuities 
[Warpinski and Teufel, 1987] have been studied, but the effect of the strength 
heterogeneity ,a common but essential feature in rock, on the fracture geometry has 
not been fully investigated especially quantitatively. Thus we attempt to bridge this 
gap with current simulation.  
 
The numerical modeling results of hydraulic fracture geometry in the synthetic 
samples with different degrees of heterogeneity are presented in Figure 8a-8d, which 
demonstrate that strength heterogeneity has a significant effect on the complexity of 
hydraulic fracture. Figure 8a shows the hydraulic fracture in highly heterogeneous 
sample (hs=0.52), where many branches are generated and widely scattered in the 
formation, corresponding to a complex fracture geometry. However, for homogeneous 
sample (hs=0.04), the fracture geometry is much simpler and few branches are 
observed (see Figure 8d). Figure 8b and 8c show the fracture geometry in samples 
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with middle degree of heterogeneity, and their fracture complexity also lies within the 
above two extremes. Because the tectonic stress is not included in current model, 
there is no predominant direction for fracture propagation just as the unconfined 
hydro-fracturing test[Falls et al., 1992]. Another obvious difference between 
heterogeneous and homogeneous samples is that, in highly heterogeneous sample a lot 
of isolated small cracks are formed, which are not coalesced to the main fracture(see 
Figure 8a). However, few isolated cracks are found in homogeneous one (see Figure 
8d). Figure 8e-8h show the fluid field corresponding to the fracture geometry in 
Figure 8a-8d. As expected, the fracture new induced is more permeable than the 
surrounding rock formation, and when a connected fracture is formed, it dominates 
the flow behavior.  
 

 

Figure 8. The fracture geometry under the pressure difference 240 kPa, with different 
heterogeneity index: (a) hs=0.52, which corresponds to a highly heterogeneous sample; (b) 
hs=0.23; (c) hs=0.12; (d) hs=0.04, a nearly homogeneous sample. Color contours (e)-(h) are 
the flow fields corresponding to the rock samples in (a)-(d). 
 
This kind of feature has also been observed in a recent hydro-fracturing experiment[P 
Liu et al., 2016] (see Figure 9). Figure 9a shows the hydraulic fracture in an artifical 
heterogeneous sample, which is more complex than the fracture in homogeneous one 
(Figure 9b). The experimental results in Figure 9 are obtained under the no geo-stress 
difference test condition just like current simulation. As a comparison, our results are 
also presented (see Figure 9c and 9d). The experimental fracture geometry of 
heterogeneous rock is similar to our simulation result in heterogeneous sample with 
hs=0.23, and the simple fracture in homogeneous rock is similar to that in current 
homegeneous sample with hs=0.04.  

 

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Figure 9. The hydraulic fracture geometry in different rock samples, where (a) and (b) are 
artificially heterogeneous and homogeneous samples respectively from Ref. [P Liu et al., 
2016]. (c) The fracture geometry in current heterogeneous sample with hs=0.23. (d) The 
hydraulic fracture in homogeneous sample with hs=0.04. 
 

3.2.2.1 Fracture propagation patterns  

In order to understand this heterogeneity controlled behavior at micro scale, the 
fracturing behaviors in heterogeneous and homogeneous samples are presented. The 
sample with hs=0.23 is taken as an example to show the fracture growth in 
heterogeneous rock (see Figure 10). When the fluid with high pressure is injected, the 
crack is firstly induced around the borehole (see Figure 10a). As the fracture 
propagates, some scattered micro cracks around the main fracture is generated (see 
Figure 10b-10d). It is because that in heterogeneous rock, bonding strength (εth) 
distribution is within a large range, and some weak bonds exist (see Figure 5b), which 
are easily broken by shear force (see Figure 10j) being the small crack nucleation. 
Then these crack nucleation may interact and coalesce, and finally be connected to the 
main fracture forming new branches. As a result, a complex hydraulic fracture is 
induced. Hence, the fracturing behavior in heterogeneous rock can be summarized as 
the nucleation and coalescence of the small cracks. It is this particular fracturing 
behavior that results in the complexity of the hydraulic fracture. However, in 
continuum-based model, the fracture propagation is often regarded as a continuous 
expansion process based on linear elastic fracture mechanics (LEFM), so it is difficult 
to capture this discontinuous pattern of crack propagation.   
 

(a)

(b)

(c)

(d)
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Figure 10. Analysis of fracture propagation patterns in heterogeneous rock. (a)-(i) The 
fracture propagation process in heterogeneous rock with hs=0.23 under the pressure 
difference of 240 kPa, which can be summarized as the formation and coalescence of crack 
nucleation. (j) The failure mode for each crack, where red and blue dots indicate the bond 
broken by tensile failure and shear failure, respectively.  
 
Contrary to the heterogeneous case, fracture propagation in homogeneous sample is 
achieved by continuous crack expansion with few branches (see Figure 11), which is 
consistent with the traditional continuum theory. This is possibly due to the small 
range of bonding strength (εth) distribution in homogeneous sample, and few weak 
bonds exist to form crack nucleation around the main fracture. Consequently, only a 
simple fracture is induced in the homogeneous sample.  
 

 
Figure 11. Analysis of fracture propagation patterns in homogeneous rock. (a)-(i) The 
fracture propagation process in homogeneous rock with hs=0.04 under the pressure difference 
of 240 kPa, where the fracture growth is achieved by continuous expansion of crack and 
corresponds to a simple fracture geometry with few branches. (j) Failure mode for each crack, 
where red and blue dots are the bonds broken by tensile failure and shear failure, respectively. 

(a)

Blue: small crack caused by shear failure; 

Red: small crack caused by tensile failure;
The size of dot represents the magnitude of  
bonding strength for each small crack.

Weak bond

(b) (c)

(d) (e) (f)

(g) (h) (i) (j)

(a)

Blue: small crack caused by shear failure; 

Red: small crack caused by tensile failure;
The size of circle represents the magnitude 
of  bonding strength for each small crack.

(b) (c)

(d) (e) (f)

(g) (h) (i) (j)
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3.2.2.2 Micro-failure mechanism  

Over the past few decades, acoustic emissions in laboratory and field scale have been 
recorded to clarify the micro-failure mechanism of hydraulic fracture[Falls et al., 
1992; Stoeckhert et al., 2015; Talebi and Cornet, 1987], and one of the major findings 
is that shear failure seismicity is commonly recorded and even in some cases it 
dominates the failure behavior[Al-Busaidi et al., 2005]. However, this observation is 
not consistent with tensile fracture suggested by traditional analytical and numerical 
models, and the conflict has not been fully solved[Al-Busaidi et al., 2005; T Ishida et 
al., 1997; Shimizu et al., 2011]. In current simulation, shear failure events are also 
observed (see Figure 10j and 11j) just as experimental observations. Figure 12 shows 
the variation of shear and tensile failure events during hydro-fracturing. It is presented 
that strength heterogeneity also has an influence on micro-failure mechanism. Shear 
failure dominates the fracturing behavior in the heterogeneous sample (see Figure 
12a), but in the homogeneous sample tensile failure events more easily occur (see 
Figure 12b). Similar scenarios can also be found in a recent hydro-fracturing 
experiment[Stoeckhert et al., 2015].  
 
For a deep understanding of this phenomenon, fracture propagation pattern and 
micro-failure mechanism are analyzed simultaneously. It is presented that shear 
failure is usually accompanied by forming crack nucleation and connecting it to the 
main fracture, which more easily happens in heterogeneous rock (see Figure 10j). 
Similar results about the role of shear failure in hydro-fracturing were also obtained 
by laboratory and field experiments [Tsuyoshi Ishida, 2001; Talebi and Cornet, 1987]. 
In contrary, tensile failure events are often accompanied by continuous expansion of 
the crack (see Figure 11j), which is commonly observed in homogeneous rock. The 
above discussion may help us understand the conflict between experimental 
observations and continuum theory predictions. In continuum model, it is usually 
assumed that the fracture propagation is achieved by continuous expansion of the 
crack, and under this condition tensile fracturing is indeed the main failure 
mechanism just as presented in the homogeneous sample (Figure 11j). However this 
assumption may be no longer valid in real rock with high heterogeneity degree, where 
the fracture propagation is not continuous and often accompanied by shear failure. 
Thus the traditional model cannot effectively predict the fracturing behavior and 
failure mechanism in real rock.       
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Figure 12. Variation of shear and tensile failure events in (a) heterogeneous sample (hs=0.23) 
and (b) homogeneous sample (hs=0.04) under the pressure difference of 240 kPa. 

3.2.3 Quantitative description of fracture geometry and failure mechanism 

The above discussions are mainly qualitative and under the pressure difference of 240 
kPa. In this sub-section, quantitative descriptions of fracture geometry and failure 
mechanism with various pressure differences (120 kPa, 180 kPa, 240 kPa and 300 
kPa) are considered, which helps to provide a comprehensive understanding of the 
heterogeneity effect on hydro-fracturing. 
 
Quantitative analysis of fracture geometry is an important aspect of studying the 
cracking behavior of rock[C Liu et al., 2013] and evaluating the hydro-fracturing 
operation[Mayerhofer et al., 2010]. However, owing to the complexity of fracture 
geometry, current analysis is still limited to the quantification of basic geometric 
parameters of the fracture such as fracture length, fracture density and fractal 
dimension[C Liu et al., 2013], and none of them can reflect the morphology of 
fracture geometry directly and effectively. Thus, how to define an index to quantify 
the fracture geometry is of great significance but also difficult.  
 
In current simulation, the hydraulic fracture is mainly a “tree” type fracture. 
Consequently, the topological index (q) for “tree” type structure is introduced to 
quantify the hydraulic fracture in current simulation, which was originally used to 
describe the geometry of root system [Bouma et al., 2001; Oppelt et al., 2001]. In root 
system, there are two extreme structures, herringbone branching (Figure 13a) and 
dichotomous branching (Figure 13b). Herringbone branching is a simple structure 
with low degree of the branching growth and development. On the contrary, 
dichotomous branching corresponds to a high degree of the branching growth, and 
can be regarded as an ideal hydraulic fracture with high geometric complexity. The 
topological index (q) is such a parameter to quantify branching patterns between the 
above two extremes[Oppelt et al., 2001]. When q=0, the fracture corresponds to the 
dichotomous branching. With increasing q, it gradually transforms to the herringbone 
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branching. When q=1, an exact herringbone branching is formed. However, the 
original topological index (q) defined in [Oppelt et al., 2001] may be smaller than 0 in 
some cases, so a modified topological index (qm) is proposed to make it between 0 
and 1 strictly and written as 

  
( ) ( )min

0 1 1 1min max 0
1max min

0 0

ln 0.5 11 1, 1, 1
ln 2 2 2

m m
m m m

m m

b bq b b
b b

nnnn   n n
nn

+ +− +
= = − = + − + +

−
,    

(20) 
where ν0 is the number of external vertices (with outdegree 0), ν1 the number of 
vertices with outdegree 1, and bm the average topological depth. Confined to the 
length of the article, more details about modified topological index (qm) are provided 
in Appendix I.    

 
Figure 13. Two extreme structures for root system. (a) Herringbone branching corresponds to 
a low degree of branching growth and can be regarded as a simple fracture geometry. (b) 
Dichotomous branching is a high degree of branching growth with high geometric 
complexity.  
 
Figure 14 shows the modified topological index of the hydraulic fracture in 
homogeneous (hs=0.04) and heterogeneous (hs=0.23) samples with various pressure 
differences. Under the same pressure difference, qm in the heterogeneous sample is 
always smaller than that in the homogeneous one, which demonstrates higher degree 
of branching growth and development is achieved in heterogeneous samples just as 
discussed in section 3.2.2. On the other hand, it also shows the feasibility and 
effectiveness of modified topological index (qm) in quantitative description of fracture 
complexity. In addition, it is qm that makes it possible to study pressure difference 
effects on hydraulic fracture in samples with different heterogeneity degrees. For 
heterogeneous samples (hs=0.23), with increasing pressure difference, the complexity 
of the fracture increases initially and then remains constant (blue dash line in Figure 
14). However, for homogeneous samples (hs=0.04), the fracture complexity does not 
increase until a relatively high pressure difference reaches (red dash line in Figure 14). 
In heterogeneous samples, some bonds with weak bonding strength exist, which make 

(a) (b)
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failure events sensitive to the pressure difference, and the fracture complexity 
increases immediately with the increasing pressure difference. However, few weak 
bonds exist in the homogeneous sample, so only a relatively high pressure difference 
can breaks the bonds around the fracture tip (being crack nucleation), which is 
necessary to form a complex fracture. In current simulation, this critical value is 240 
kPa, and only pressure difference larger than it can lead to a more complex fracture.  

 
Figure 14. Modified topological index (qm) for homogeneous (red one with hs=0.04) and 
heterogeneous (blue one with hs=0.23) samples under various pressure differences (120 kPa, 
180 kPa, 240 kPa, 300 kPa), and in order to avoid the random error, five random samples are 
generated for each strength heterogeneity degree.  
 
Similar analysis is also applied to the heterogeneity effect on micro failure mechanism. 
Shear failure percentages in homogeneous and heterogeneous samples with various 
pressure differences are shown in Figure 15. It is presented that the micro failure 
mechanism is affected by two factors. The first one is the strength heterogeneity 
degree of the sample. Under the same pressure difference, shear failure more easily 
dominates in heterogeneous samples than in homogeneous ones as presented in 
section 3.2.2.2. Another important factor is the pressure difference, which reflects the 
influence of fluid phase on micro failure mechanism. For both heterogeneous and 
homogeneous samples, shear failure percent increases with increasing pressure 
difference, which means high pressure difference is conducive to shear failure events. 
This may be due to the high pore pressure in the formation around the fracture caused 
by the fluid leak-off under high pressure difference.  
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Figure 15. Shear failure fraction in heterogeneous (hs=0.23) and homogeneous (hs=0.04) 
samples under various pressure differences, and for each heterogeneity degree, five random 
samples with the same distribution are generated. 
 
This pore pressure effect on failure mechanism can be further explained graphically 
by the Mohr-Coulomb failure criterion as shown in Figure 16. For a certain point with 
greatest principal stress 1σ  and least principal stress 3σ , its normal and shear force 
in different directions can be represented graphically by Mohr’s circle with center 
( )1 3 2σσ +  and radius ( )1 3 2σσ − . If the Mohr’s circle becomes tangent to the 
failure envelop (straight line in Figure 16), shear failure will result. In a saturated 
material, stress should be replaced by the effective stress effσ  ( eff pσσ = − ), so the 
center and radius of Mohr’s circle become ( )1 3 2 2pσσ + −  and ( )1 3 2σσ − , 
respectively. When the pore pressure increase ( p∆ ) , the Mohr’s circle will move to 
the left by p∆  (see Figure 16). As a result, Mohr’s circle becomes more likely to be 
tangent to the failure envelop, leading to a shear failure event. Chitrala et al. [2012] 
studied the effect of flow rate and fluid viscosity on failure mechanism[Y Chitrala et 
al., 2012a; Yashwanth Chitrala et al., 2012b], and both of them can be summarized as 
higher pore pressure more easily leads to shear failure.   
 

 
Figure 16. Mohr-Coulomb failure criterion diagram in the saturated material, when Mohr’s 
circle becomes tangent to the failure envelop, shear failure will result. If the pore pressure 
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increases, Mohr’s circle moves to the left, so shear failure events more easily occur. 

4. Conclusions 

In this study, a pore-scale LBM-DEM framework is presented to simulate 
hydro-fracturing directly and aimed to provide a more accurate hydro-mechanical 
coupled model to capture the multi-physics and complex geology in this process. As a 
first step, the strength heterogeneity effect on fracture geometry and micro failure 
mechanism is simulated. Contrary to the traditional continuum model, the cracks 
nucleation and coalescence can be simulated explicitly. In order to evaluate the 
hydraulic fracture quantitatively, a modified topological index is proposed to quantify 
the complexity of fracture geometry, which can directly reflect the morphology of 
fracture geometry effectively unlike other basic geometric parameters such as fracture 
length, fracture density and fractal dimension. Numerical results show that strength 
heterogeneity has a significant influence on hydro-fracture process. In heterogeneous 
sample fracture geometry is more complex than that in homogeneous one. In addition, 
shear failure is more easily observed in heterogeneous sample with high pore 
pressure.  
 
Current numerical results may provide some basic understanding of hydro-fracturing 
process at pore scale, including failure mechanism and fracture geometry. (1) There 
are two kinds of fracturing behavior in rock during hydro-fracturing. The first one is 
crack nucleation around the fracture tip and then connection of it to the main fracture, 
which is commonly observed in heterogeneous sample and accompanied by shear 
failure. The second one is the continuous propagation of the crack in homogeneous 
sample, where tensile failure usually dominates. In addition, these two failure patterns 
in hydro-fracturing are also affected by the pore pressure. As the pore pressure 
increases, the fracturing behavior tends to transform from the second one to the first 
one. Thus traditional continuum models with continuous crack propagation 
assumption difficultly predicts the complex fracturing behavior (crack nucleation and 
coalescence) in real rock, which results in the conflict between its prediction (tensile 
failure) and experimental observation (shear failure). (2) The strength heterogeneity in 
rock mass has a significant effect on the complexity of hydraulic fracture. In a highly 
heterogeneous rock, weak bonds (pre-existing defects in rock) around the fracture tip 
are easily broken by shear force. Once they are connected to the main fracture, new 
branches are formed, resulting in complex fracture geometry. Thus before hydraulic 
fracture treatment, the degree of strength heterogeneity in the formation can be used 
to predict whether a complex fracture can be induced or not, which may serve as the 
first step to evaluate a reservoir especially for unconventional ones, because only a 
complex fracture can stimulate their productions efficiently. 
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Appendix I 

The calculation of the modified topological index is provided in this section. For a 
branching structure, there are two kinds of elements, vertices and edges, and each 
edge connects two vertices. Here the branching structure is also called as a tree-type 
structure. The fracture geometry in our simulations is closer to the tree-type structure, 
thus the quantitative description of the “tree” structure can be introduced to quantify 
our fracture geometry. 
 
A tree structure is given graphically as an example in Figure A1, where vertices i is 
the base vertex and the edge not emerging from the base vertex has indegree 1 
(mother edge) and can have various outdegrees (the number of adjacent daughter 
edges)[Oppelt et al., 2001].  
 

 
Figure A1. A diagram of non-binary tree structure.  

 
A common tree structure is the binary tree, where the inner edges have outdegree 2 (a 
dichotomous branching node), and the exterior edges have outdegree 0 (a root tip). 
However, here the inner edges have outdegree 1 are considered (here we call it 
non-binary tree for the sake of writing convenience), because in current results some 
fracture branches with obvious length difference exist. In order to consider this effect, 
the long fracture branch (branch length larger than the average branch length) is 
separated as n inter edges with indegree 1 contacting with each other (edge d in 
Figure A1), and n is the integer closest to the ratio of the branch length to the average 
branch length. For a tree structure including vertices with outdegree 1, the total 
number of edges ν is calculated by 

0 12 1ν ν ν= − + ,                          (A1) 
where ν0 is the number of external vertices (with outdegree 0), and ν1 is the number of 
vertices with outdegree 1.  
 
To calculated the topological index, the topological depth (l) for the vertex is needed, 
which means the smallest number of edges connecting this vertex and the base vertex. 
Based on the topological depth, a topological index for binary tree was 
proposed[Oppelt et al., 2001] 
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which is a normalization of the average topological depth (b) for all the external 
vertices by a linear transformation, making [ ]0,1q∈  for binary tree. However, for 
non-binary tree, q may be beyond the limit of 0 and 1[Oppelt et al., 2001].  
 
Thus a modified topological index qm is proposed here,  
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which is also a normalization of the average topological depth (bm) by a linear 
transformation, but for considering the influence of vertices with outdegree 1, the 
average topological depth bm is modified as 
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,                       (A4) 

where the topological depth is summed for both vertices with outdegree 0 and ones 
with outdegree 1.  
 
With this modification, [ ]0,1mq ∈  for both binary tree and non-binary tree, and qm 
can recover q for binary tree. When 0mq → , the tree structure is closer to the 
dichotomous branching (see Figure 13b), and when 1mq → , it is closer to 
herringbone branching (see Figure 13a). Figure A2 shows two structures and their 
modified topological index qm, which presents that the current modified topological 
index can effectively distinguish the herringbone branching from herringbone 
branching.  
 

 
Figure A2. The modified topological index qm for different structure, where the left structure 
is closer to the herringbone branching qm=0.93 , and the right structure is closer to the 
dichotomous branching qm=0.23. 

qm=0.93 qm=0.23
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Appendix II  
To show the mesh independence of current numerical results, the same case as that in 
Figure 6 is simulated with finer meshes (989 elements see Figure A3). Here, we 
consider two samples (hs=0.23 and 0.04) with fluid pressure difference of 240 kPa. 
Owing to the random factor introduced by Weibull distribution of bonding strength, 
the fracture geometry may be not completely identical under different mesh 
morphologies. However, the underlying physics of strength heterogeneity effects on 
hydro-fracturing are not influenced by the specific mesh size. As present in Figure A4, 
fracture geometry is much more complex in the heterogeneous sample (hs=0.23) than 
that in the homogeneous one (hs=0.04), which is the same as the results obtained in 
Section 3.2.2. In addition, the model with finer meshes also confirms the conclusion 
that shear failure more easily dominates in heterogeneous samples (hs=0.23, shear 
failure percent 53.33%) than in homogeneous ones (hs=0.04, shear failure percent 
25%). Thus, the numerical results obtained from coarse mesh model (503 elements) 
are robust and can be used for further exploration.  
 

 
Figure A3. The diagram of LBM-DEM model with finer meshes, where 989 elements 
and 1309 contact elements are generated.  
 

 
Figure A4. The fracture geometry obtained by current LBM-DEM model with finer 
meshes, and the pressure difference is 240 kPa. (a) Hydraulic fracture in the 
homogeneous sample (hs=0.04) and (b) in the heterogeneous sample (hs=0.23).   

(a) (b)
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