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Abstract

This paper presents a numerical model based on the Lattice Boltzmann Method (LBM),
developed for studying dynamic responses of an unsaturated porous medium to periodic im-
bibition and drainage induced by a cyclic water table movement. The model includes gravity
which helps defining an hydraulic head. The model predicted an incremental increase of the
overall water content in the medium over each cycle prior to a quasi-steady oscillatory state,
a hydraulic ratcheting effect that has been previously observed in laboratory experiments.
An empirical model was proposed to combine the transient and harmonic variations of the
volumetric water content. The parameters of this empirical model were examined against
physical quantities including the frequency of the driving water table oscillations and the
porosity of the porous medium. The findings presented here may help to improve the for-
mulation of constitutive models that are able to describe hydraulic processes of unsaturated
soils.
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1. Introduction

Infiltration and drainage in unsaturated soils are important processes related to variations
in boundary conditions at the interfaces with the atmosphere, surface and groundwater bod-
ies caused by, for example, evaporation-condensation, tidal oscillations and rainfall. These
processes produce so-called dynamic effects [1] on the water retention capabilities of the soil.
These effects have been studied extensively with models proposed to take into account the
deviation from equilibrium conditions as a perturbation (the so-called τ model [2, 3]). How-
ever, the accuracy of these models tends to deteriorate when the capillary pressure varies
faster than a soil specific critical rate [3].

A numerical model is developed to simulate transient flow processes of pore water in
an unsaturated soil column subjected to periodic forcing conditions, using a multiphase
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multicomponent (MP-MC) implementation of the LBM. Water evolution in unsaturated
soils is usually described by Richard’s equation [4], which considers water retention curves
at equilibrium. In contrast, the LBM solves the Boltzmann equation, which is a more general
and fundamental description of the fluid dynamics [5]. The application of the Boltzmann
equation is not only for multiphase-multicomponent fluid dynamics [6, 7, 8]; it encompasses
a broader range of conditions including laminar and turbulent flow in the pore space [9, 10],
interactions with solid boundaries formed by grains of complex shapes [11] and moving solid
particles modelled using the Discrete Element Method [12]. Also, it has shown potential
to describe key quantities at the pore scale such as the fluid distribution inside the pore
network [13].

The LBM scheme has shown enough power to solve different partial differential equa-
tions, unrelated to porous media flow problems, adding more versatility to its modelling
capabilities. Among these applications the simulation of relativistic fluids [14, 15], the solu-
tion of Maxwell equations [16, 17] and the study of classical wave propagation problems [18]
can be mentioned. The level of detail of a LBM simulation allows the observation of micro-
scopic phenomena with ease. However, the increase of the level of detail is computational
expensive.

LBM has previously been used to reproduce the water retention curve of porous media
in equilibrium conditions [19, 20]. However, there have been no studies reported using
LBM to explore dynamic effects on imbibition-drainage processes in porous media. In the
present study, these processes were simulated in a modelled soil column subjected to a
harmonic hydraulic head fluctuation. These simulations are aimed to examine particularly
the transient component of the water saturation response to the periodic head fluctuation.
In particular, when the cycles take place faster than a characteristic equilibrium time, there
is an incremental saturation increase after each cycle as reported in the literature [21]. This
phenomenon, herein referred to as hydraulic ratcheting, is the subject of the detailed study
in this paper.

The rest of the paper is structured as follows: In Sec. 2, the implementation of the LBM
model used in this study is briefly described. In Sec. 4, the transient response of simulated
water saturation is examined in detail with an empirical model proposed for describing the
saturation evolution. Finally, in Sec. 5, discussions and implications of the finding from the
current work are presented.

2. Model

The LBM D2Q9 scheme [22] was adopted. Within this scheme, the space is divided
into a square grid. To solve the Boltzmann equation, further discretization is needed in the
velocity domain. A set of nine discrete velocities (Fig. 1), each with an associated probability
function fi, were assigned to every cell. The discrete velocities are defined as follows:

~e0 = (0, 0),
~ei=1,2,3,4 = C (cos(π(i− 1)/2), sin(π(i− 1)/2)) ,

~ei=5,6,7,8 = C
√
2 (cos(π(i− 7/2)/2), sin(π(i− 7/2)/2)) ,

(1)
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where C is a lattice constant, = δx/δt with δt being the time step and δx the side of each
square cell. To define the fluid velocity ~u and density ρ at a given cell, the following relations
were applied:

ρ =
∑8

i=0 fi
ρ~u =

∑8
i=0 fi~ei

(2)

It is also important to assign a set of weights ωi for the velocities. For the D2Q9 scheme,
such weights are:

ω0 =
4

9
,

ωi=1,2,3,4 =
1

9
,

ωi=5,6,7,8 =
1

36
,

(3)

After defining the velocities, an evolution rule is implemented to solve the Boltzmman
equation [9]:

fi(~x+ δt~ei, t+ δt) = fi(~x, t) + Ωcol, (4)

where ~x is the position of the given cell, t is the current time and Ωcol is an operator for the
collision of all the particles that exist inside the cell. For this study, the widely accepted
Bhatnagar Gross Krook (BGK) model for the collision operator [23] was used, which assumes
that the collision processes drive the system into an equilibrium state given by an equilibrium
function f eq

i ,

Ωcol =
f eq
i − fi
τ

(5)

with τ being a characteristic relaxation time. It has been demonstrated that the Navier
Stokes equations for fluid flow [5] are recovered if,

f eq
i = ωiρ

(

1 + 3
~ei · ~u
C2

+
9(~ei · ~u)2

2C4
− 3u2

2C2

)

(6)

and the dynamic viscosity of the fluid ν is given by,

ν = (τ − 0.5)
δ2x
3δt

. (7)

Eq. 7 imposes a constraint on τ , which must be greater than 0.5 for the viscosity to be
physically correct. It is also known that values close to 0.5 produce unstable numerical
behaviour [9]; hence it is advisable to keep its value close to one.

In order to model multicomponent and multiphase flows as well as body forces such as
the gravity force [24], a net force is introduced for each cell. The net force ~F modifies the
velocity used in the calculation of the equilibrium function as follows,

~u′ = ~u+
δt ~F

ρ
. (8)

In the case of gravity, the force is simply ~Fg = ρ~g where ~g is the gravitational accelera-
tion [25]. In the present study gravity has been included allowing a phreatic limit to be
defined which will prove useful for the simulation analysis later on.
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Multiphase flows are modelled in LBM by introducing attractive forces ~Fa representing
the interaction between the fluid molecules. In this paper, the Shan-Chen model [26] was
used. With this scheme, the attractive forces are given by:

~Fa = −Gaψ(~x)
8
∑

i=1

ωiψ(~x+ δt~ei)~ei, (9)

where Ga is a constant representing the intensity of the attraction and the function ψ is an
interaction potential which should be bounded and increasing monotonically with density.
For this study, the following form was taken [9]:

ψ = ψ0 exp (−ρ0/ρ) , (10)

with ψ0 and ρ0 being constant.
It is known that for this model the fluid follows the following equation of state (EOS)

for the fluid pressure p [9]:

p =
C2

3
ρ+

Ga

6
C2ψ2(ρ). (11)

Unfortunately, this model suffers a critical drawback: The liquid phase may be highly com-
pressible. Solutions have been proposed to address this issue. For example, rearranging
Eq. 11 for ψ(ρ) yields [19]:

ψ(ρ) =

√

6p− 2C2ρ

GaC2
. (12)

Any possible EOS can be simulated by assigning its functional form to p in Eq. 12, in
particular EOSs with low compressibility where ∂p

∂ρ
→ ∞ for a given density. Since Ga is

negative, in the case of attractive forces, 6p − 2C2ρ < 0 must hold for ψ(ρ) to remain in
the real domain and physically meaningful. In other words, the pressure given by a non
ideal EOS should be smaller than the pressure given by the ideal EOS for the same density.
For realistic simulations this criterion is not often met. As an example, a Van der Waals
EOS will eventually be higher than the ideal counterpart because of the singularity term and
hence the ψ function will be imaginary. Consequently Eq. 10 was used instead for this study.
The ultimate solution for this problem is the introduction of the hard sphere repulsion to
the LBM formalism. However, this is not easy and has not yet been done to the best of our
knowledge.

With Eqs. 10 and 11 applied for large densities, the pressure follows a shifted ideal
gas law. The simulated fluid compressibility can be estimated based on the inverse of the
following derivative,

∂p

∂ρ
=
C2

3
. (13)

It is clear that the simulated fluid compressibility is controlled by the lattice speed parameter
C. With large values of C, ∂p

∂ρ
can be kept large to approximate an incompressible fluid.

However changing C changes also other parameters, such as the surface tension, and therefore
is a solution that has to be used with care specially for multiphase simulations. Therefore it
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is important to check the effect of the compressibility (for instance with the Mach number)
on the obtained results.

More than one component can be simulated by assigning an independent lattice to each
of them [27]. Then different fluids (lattices) interact through repulsive forces ~Fr in a similar
way to that of Eq. 9. For example, the interaction of component 1 (indicated by subscript
1) with component 2 (subscript 2) can be expressed as follows,

~Fr = −Grρ1(~x)
8
∑

i=1

ωiρ2(~x+ δt~ei)~ei, (14)

where Gr controls the repulsion intensity – its value is always positive – and the potential
(ψ) terms have been replaced by the densities of the two components/phases.

With multiple components included, the equilibrium velocity (Eq. 2) must be corrected,
i.e.,

~u =

∑

σ

∑8
i=1

1

τσ
fσ
i ~ei

∑

σ
ρσ
τσ

(15)

where the contribution of each component σ has been accounted for [27].
Finally, the interaction of the fluids with solids is two-fold. Firstly, the fluid must be

repelled by solid cells upon collision. Hence, the bounce-back boundary condition [9] was
implemented for cells that are tagged as solids: after the collision step, the distribution
functions are swapped symmetrically, i.e.,

f−i = fi (16)

where the subscript −i refers to the opposite direction to the i-th velocity. Secondly, to
model the capillary effect the fluid should also be attracted to the solid in a similar way to
that expressed by Eq. 9,

~Fa = −Gsψ(~x)
8
∑

i=1

ωis(~x+ δt~ei)~ei, (17)

where Gs controls the intensity of the fluid-solid attraction and s is a logical constant, =
1 if the cell has at least one neighbouring cell tagged as solid and 0 otherwise. As will be
shown, values of parameters Ga, Gr and Gs can be set accordingly to simulate required fluid
properties including contact angle of interface, surface tension and immiscibility of multiple
components.

3. Simulation setup

It is commonly the case that LBM models are based on lattice units. In such units,
δt = δx = C = 1. The lattice units, however, can be converted to physical ones based on di-
mensional analysis to enable comparison of the simulation results with experimental data and
analytical solutions. The LBM approach has been successfully validated in a broad range of
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applications [9]. In this work, lattice units are used as well. The multicomponent-multiphase
scheme described above was implemented to model two immiscible fluids, representing air
and water, respectively. To achieve this, the attraction constants Ga were set to different
values for the two fluids. The corresponding values for the parameters adopted for the work
are listed in Table 1. The three LBM parameters described above (Ga,Gr and Gs) control
measurable quantities such as the liquid and vapour densities for each component, the sur-
face tension and the contact angle with solid surfaces. Fig. 2 shows results of a contact angle
simulation based on the values for the LBM parameters given in table 1.

The first fluid has a non-zero Ga, only under which Eq. 11 applies. The parameter value
used ensured a liquid phase density at zero pressure of ρl = 1119.2mu/δ

2
x (mu equal to

mass units which is equivalent to a unit density multiplied by the area of the LBM cell δ2x)
obtained by solving 11 for the third root value over the spinodal point. Greater pressures
would compress the fluid and increase its density.

For problems involving multi-component fluids, the surface tension at the interface is a
critical quantity for setting the simulated condition; and thus it is useful to determine this
quantity based on the LBM parameter values used in the simulations and convert it from
the lattice units system to the physical system. For that purpose, a set of bubble simulations
were carried out. Bubbles of different radii made of the light fluid (gas) were placed into
a domain filled with the denser one (water). Simulation results in snapshots are shown in
Fig. 3. To measure the surface tension σ, the Young-Laplace equation was used,

Pin − Pout =
σ

R
, (18)

where Pin and Pout are the pressure of the mixed fluid inside and outside the bubble, respec-
tively; and R is the bubble’s radius. To measure the pressure p at a given point, Eq 11 was
used for each component with an extra (third) term added to account for the mixing [20],
i.e.,

p =

(

2
∑

i=1

C2

3
ρi +

Gi
a

6
C2ψ2(ρi)

)

+GrC
2ρ1ρ2. (19)

The capillary pressure Pc = Pin−Pout is shown as a function of the inverse of the bubble’s
radius in Fig. 4. The slope of the line gives the surface tension (94.5± 1.3muδ

−2
t ).

The set-up for the simulations for the investigation of the dynamic response is schemati-
cally shown in Fig. 5. The granular medium was generated by filling the model domain with
a poly-disperse random array of solid disks until the desired porosity was obtained. The left
and right boundaries were all composed of solid cells, i.e., no-flow boundaries (impermeable)
for both fluids. The top boundary was also tagged as solid for the first fluid (water). At
the bottom boundary, the density ρb was set to vary in time to simulate oscillations of the
water pressure. In contrast, for the second fluid (gas) the bottom boundary was set to be
impermeable while a constant pressure (density) was imposed at the top boundary allowing
both gas in- and out-flow[28].

It is expected that by setting a density value at the bottom boundary, the system will
relax eventually until the pressure at the bottom equals the pressure of the fluid column
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under gravity. Hence, simulations were carried out without disks to find the dependence
between the imposed bottom density ρb and the maximum height h reached by the fluid at
equilibrium. As an example, the evolution of the fluid column from a simulation is shown
in Fig. 6.

In Fig. 7, the maximum fluid height varying with a set of ρb values is shown. It can be
observed that a linear dependence of H = Aρb+B (with A = 0.056 and B = 1.337) provides
a good fit. It is useful to refer to this height as the hydraulic head for the chosen g value.
In theory, the hydraulic head H should follow,

H =
p(ρb)

ρ̄g
, (20)

where ρ̄ is the mean density and p(ρ) is given by Eq. 11. However, comparison between
the H values calculated by this equation and those presented in Fig. 7 shows a noticeable
discrepancy. This indicates that Eq. 11 is not suitable for finding the fluid pressure at the
cell level for this problem with gravity involved and no correction has been made to the
best of our knowledge. However, the importance of this discrepancy is not critical since an
empirical relation between the equilibrium height and the imposed density at the bottom
has been found. Therefore, the simulation results of the water saturation are analysed in
relation to the height H (representing the hydraulic head as circles in Fig. 7) instead of the
density imposed at the bottom boundary ρb. To the best of our knowledge this is the first
time a phreatic surface in the presence of gravity is properly defined in an LBM soil column
simulation.

4. Transient response to imposed harmonic head fluctuations

The purpose of the simulations was to study the transient response of the modelled soil
column to harmonic hydraulic head fluctuations imposed at the domain bottom boundary,
i.e.,

h(t) = 0.5h0(1− cos(ωt)). (21)

with h0 being a constant that controls the average water saturation. Should the water be
able to invade the void spaces without any resistance, there would be an immediate response
of the saturation Sr to the imposed head fluctuation h(t). However, due to the hydraulic
conductivity of the sample, as a measure for the resistance of the porous medium to the
water flow, there is a lag between the two signals as observed experimentally [29].

To explore this phenomenon with the LBM set-up, two dynamic situations with 16 and
6 cycles for a given timespan were simulated and compared with the equilibrium condition.
As can be seen in Fig. 8, due to the transient nature of the simulation with the highest
frequency (16 cycles), an incremental increase of the water saturation was evident after each
cycle until a quasi-steady state (equilibrium) was reached. For the lower frequency (6 cycles),
the transient component became bounded and disappeared for the equilibrium simulation
as expected. Fig. 9 shows the saturation evolution over time for different frequencies of the
driving head fluctuations. Two different behaviours can be observed: a harmonic response
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with the same frequency as that of h(t), and additionally a growing trend with a clear limit,
which is likely to be well captured by an exponential function with an asymptotic value of
Srmax. The asymptotic value appeared to be independent of the frequency of the driving
head fluctuation. This exponential increase trend was more noticeable for large frequencies,
where the amplitude of the harmonic component was small. A superposition of these two
behaviours/effects may be proposed as follows,

Sr(t) = A(ω) cos (ωt+ φ) + Srmax (1− exp(−t/tc)) , (22)

where A is the amplitude of the harmonic Sr oscillations, φ is a phase difference between
Sr and h produced by the hydraulic lag, and tc is a characteristic time for the exponential
transient function.

To explore the validity of Eq. 22, a Fourier analysis was conducted to separate the
harmonic and exponential components. In Fig. 10, the discrete Fourier transformation
amplitudes are shown for each frequency. The anomalous peak represents the frequency of
the imposed hydraulic head. This peak was filtered out by interpolation of the surrounding
points. The inverse Fourier transformation was then applied to the filtered spectrum. Fig. 11
shows the water saturation variation with time after the harmonic signal had been filtered by
the Fourier method. With the same filtering method applied to all the simulations (with 16
different frequencies as shown in Fig. 9), the average fitting parameters for the exponential

function were found to be Srmax = 0.58 ± 0.02 and tc
√

g/H = 12.67 ± 0.05. The errors
associated with the fitting were small for these values; thus it may be concluded that both
parameters do not depend on ω.

Although Srmax and tc do not depend on ω, it is expected that the amplitude of the
harmonic component (A) and its phase difference (φ) are functions of the frequency. Indeed
Fig. 12 shows the amplitude variations with frequency. Previous studies have found a power
law dependence of A on ω for large frequencies, which seemed to be also evident in the
present simulations [29, 30]. The phase φ was negative, as given by the lagged signal. For
small values of ω, φ approached zero and the oscillation of Sr became synchronised with the
driving head fluctuation.

At this point it is important to check if the observed lag has a strong dependence on
the compressibility of the LBM fluid. To check this, the average Mach number is measured
for the initial cycle, which is the one with the fastest change in water saturation. The
average velocity is calculated spatially over all the cells containing the wetting fluid and
temporally over the full cycle. The obtained Mach number for the first cycle of the highest
frequency (18 cycles over the total time of 4.0 × 105 δt) is 0.029 which is below the level
(Mach number ∼ 0.1) where compressibility effects should be considered. Later cycles, and
cycles for lower frequencies will have Mach numbers below this level as well. Therefore,
although the observed lag should have a contribution due to the compressibility of the fluid,
it is largely dependent on the porous medium and the capillary action in this study.

The soil structure would also play an important role in the development of the transient
condition, mainly due to its influence on hydraulic conductivity. Further simulations were
conducted with varying porosity. The results plotted in Fig. 13 show the dependence of tc on
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the porosity. As expected, tc decreased with increasing porosity as a result of the increased
hydraulic conductivity giving a more responsive soil system. Porosity is affected by internal
stresses, which may lead to large variations of hydraulic conductivity with depth, especially
when denser portions of the soil are encountered. It is thus expected that the hydraulic

ratcheting effect, examined here and observed experimentally [29], may be more pronounced
in deep soil layers.

5. Discussions and concluding remarks

In this paper, a numerical model using the Shan-Chen LBM formulation [26] has been
developed for studies of the behaviour of multiphase and multicomponent fluids in soils.
The study includes the effect of gravity, rarely considered in LBM simulations of multiphase
fluids. Thanks to this, a water table can be defined and it has been shown that its height
(the hydraulic head) can be controlled with the density boundary condition imposed at the
domain’s bottom.

By imposing a cyclic water table, important transient effects have been observed. In par-
ticular, the hydraulic ratcheting phenomenon, characterised by a gradual accumulation of
volumetric water content was investigated through simulations based on this model. Based
on the analysis of the simulation results, it can be concluded that the saturation Sr evolves
according to Eq. 22 which is similar to empirical equations found during soil column ex-
periments [29]. This relationship depends on four independent parameters: the amplitude
A and the phase difference (lag) φ of the harmonic component, and a transient component
defined by an equilibrium saturation Srmax and a relaxation time tc. It was found that the
frequency ω of the imposed head fluctuation affects strongly the parameters A and φ, but
it does not influence the transient component.

Porosity affects the characteristic time tc: as expected for a large porosity, tc decreases,
reducing the timespan needed to reach the equilibrium condition. The parameter tc is
independent of the driving head fluctuation and may be considered as an intrinsic parameter
of the soil. It may be further hypothesised that this characteristic time also depends on the
soil particle size distribution, shape, and packing pattern. Therefore, tc is likely to be linked
to the soil hydraulic conductivity.

The relationship expressed by Eq. 22 is an analogue to the RC (Resistance-Capacitance)
circuit. In the latter, a complex impedance produces a lag between the input signal Vin and
the voltage at the capacitor VC . The analytical solution of the capacitor voltage for an input
voltage of the form Vin = V0(1− cos(ω(t))/2 is:

VC = A(ω) cos(ω + φ) +
V0
2
(1− exp(−t/tc)) (23)

where A = 0.5V0/
√

(ωtc)2 + 1, φ = arctan(ωtc) and tc = RC (the product of the resistance

R and the capacitance C). According to the analogy, R for the soil would be proportional
to the inverse of the hydraulic conductivity; and the capacitance must be related to the
porosity, since it would be an indication of how much water the system can store. The
lag characterised by tc and φ produced by the complex impedance is consistent with the
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complex porosity used in the literature [29, 30] to study the phase difference between the
driving and responding hydraulic heads. Despite the similarity between Eqs. 22 and 23, the
functional forms for the parameters in Eq. 22 (A, tc and φ) unfortunately cannot be derived
from the analogy.

In summary, the hydraulic ratcheting phenomenon examined here has important im-
plications for studies of shallow groundwater systems, especially those subjected to cyclic
wetting and drying processes associated with boundary condition changes (e.g., evaporation-
condensation and tide-induced oscillations). The transient effect revealed represents a con-
siderable variation of water storage in the unsaturated soil and may influence water balance
in the subsurface environment over large scales. Although local-scale soil water retention
characteristics were not investigated in this study, it is possible that the transient effect
shown in the soil column is related to dynamic capillary pressure, which is not incorpo-
rated in commonly used soil water retention models using the equilibrium assumption. The
presented LBM implementation can be extended to 3D and used to study more complex
variations of the water table.
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Figure 1: In the D2Q9 scheme, the domain is divided into a square grid with each cell simulated through 9
discrete velocities (~ei), each associated with a distribution function fi.

Table 1: Parameters values used in the simulations. The superscript 1 is used for the denser fluid representing
water. The values of ψ0 and ρ0 are the same for both fluids

Parameter Value
G1

a -200.0
G2

a 0.0
ψ0 4.0
ρ0 200
Gr 0.001
g 0.001
τ 1.0

Final time 4.0 × 105 δt
Domain width 400 cells
Domain height 600 cells

Figure 2: Liquid bubble at the equilibrium with G1

s
= −600.0 ensuring a contact angle of 31◦.
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(a) (b)

Figure 3: Bubble simulations of a lighter fluid (red) inside the denser one (blue) for two different radii: a)
20 δx and b) 70 δx
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Figure 4: Capillary pressure Pc as a function of bubble radius. The slope of the line determines the surface
tension between the fluids (94.5± 1.3muδ

−2

t
).
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Figure 5: Simulation set-up. The no-flow boundary cells of the LBM domain were tagged as solid. The
bounce back rule of Eq. 16 were applied to them but with cohesion (Eq. 17) turned off to mitigate the effects
of the boundaries. The water table oscillated with time during the simulation due to the varying pressure
head imposed at the bottom boundary.

(a) (b)

(c)

Figure 6: Evolution of the fluid column from a simulation in which the bottom density was fixed with a
constant value and an equilibrium condition was reached at the end.
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Figure 7: Maximum fluid height H varying with density (pressure) imposed at the bottom. The value
obtained from Eq. 20 is also shown for comparison (triangles).
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Figure 8: Imposed hydraulic head fluctuations (h0 − h(t))/h0 versus the saturation variations (Sr) for two
different frequencies and 4 cycles of equilibrium simulations. The arrows shows the time sequence taking for
the equilibrium cycles, first imbibition and then drainage, which also holds for the dynamic simulations.
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Figure 9: Water saturation Sr as a function of dimensionless time (time multiplied by the factor
√

g/H)
from simulations with different frequencies (as indicated by the number of fluctuation cycles within the
period of the plots).
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Figure 10: Amplitude of the Fourier components |F (ω)| for each frequency for both original (triangles) and
filtered signals (squares).

18



0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

t(g/H)1/2

S
r

 

 

filtered data

exponential fit

original data

Figure 11: Function Sr(t) after the filtering process (blue) fitted with the exponential component of Eq. 22
(green) and the original data (red).
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Figure 12: Amplitude A(ω) of the harmonic component of Sr(t) as a function of ω with a power law fitting
(exponent equal to −0.36). Inset: phase angle φ representing the lag of the Sr oscillation behind the imposed
head fluctuation.
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Figure 13: Characteristic time tc versus porosity. The red line is provided as a visual aid, not based on any
particular fitting function.
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