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Abstract In the present paper a simulation framework
is presented coupling the mechanics of fluids and solids

to study the contact erosion phenomenon. The fluid is

represented by the Lattice Boltzmann Method (LBM)

and the soil particles are modelled using the Discrete El-

ement Method (DEM). The coupling law considers ac-
curately the momentum transfer between both phases.

The scheme is validated by running simulations of the

drag coefficient and the Magnus effect for spheres and

comparing the observations with results found in the
literature. Once validated, a soil composed of particles

of two distinct sizes is simulated by the DEM and then

hydraulically loaded with an LBM fluid. It is observed

how the hydraulic gradient compromises the stability

of the soil by pushing the smaller particles into the
voids between the largest ones. The hydraulic gradient

is more pronounced in the areas occupied by the small-

est particles due to a reduced constriction size, which at

the same time increases the buoyancy acting on them.
At the mixing zone, where both particles sizes coexist,

the fluid transfers its momentum to the small particles,

increasing the erosion rate in the process. Moreover, the

particles show an increase in their angular velocity at

the mixing zone, which implies that the small particles
roll over the large ones, greatly reducing the friction
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between them. The results offer new insights into the
erosion and suffusion processes, which could be used to

better predict and design structures on hydraulically

loaded soils.

1 Introduction

Erosion processes are particularly hazardous phenomenon,

especially for structures built over soils that can poten-

tially be hydraulically loaded. In a typical erosion pro-

cess some of the particles, particularly the small ones,

are easily driven out of their resting places by fluid flow.
These displacements may compromise the stability of

the granular skeleton.

As in many other problems found in engineering,

modelling efforts have been mainly based on the con-

tinuum approach. Some examples include the modelling

of suffusion processes [21] and the onset of fluidisation
of a portion of the soil [23]. However, there are several

details at the micro-scale that are difficult to introduce

into models based on the continuum approach. For in-

stance, while every well posed model contains conver-
sation laws such as energy and momentum conversa-

tion, the conservation of angular momentum is usually

ignored. Therefore, the complex dynamics of the parti-

cles being driven by the fluid, including rich phenomena

such as the rolling of particles and interlocking, is not
properly captured by these models. Simulations based

on the Discrete Element Method (DEM) have shown

that the relative rolling of particles inside the granular

skeleton greatly reduces its strength [6] in dry soils. An
important question following this reasoning is whether

the fluid flow inside the porous medium could also aug-

ment this effect and further reduce the soil stability.
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In this paper a simulation framework focusing on

these microscopic effects is presented. The framework is

based on the coupling methods published by Owen et al [4,

5,18,14] between the DEM and the Lattice Boltzmann

Method (LBM). The method introduces both linear and
angular momentum transfer between the fluid and the

particles in contact. Two validation examples are pre-

sented to prove that the method is properly defined.

The validated framework is then used to study a
specific erosion process with a virtual soil made of two

distinct particle sizes. The effect of the hydraulic load

on each of the soil components can be observed indi-

vidually and its outcome can be quantified. Important

conclusions about the interaction of the different phases
are drawn from the observations, which in turn could

potentially be used in the future to formulate better

predictive models for the erosion phenomenon.

The paper is structured as follows: Sec. 2 describes
independently the DEM and LBM and then describes

the coupling law between the two. Sec. 3 presents a

series of validation examples and compares the results

with previous studies. Sec. 4 illustrates a simulation

of a particular case of contact erosion of two granu-
lar assemblies of distinct particle sizes, followed by the

conclusions of the work in Sec. 5

2 The method

2.1 The Discrete Element Method (DEM)

The spherical DEM used for the present study is based

on the standard linear dashpot introduced previously in
the literature [3]. The discrete elements are free to move

inside the domain and a contact is defined when two

spheres intersect. Fig. 1 shows a pair of DEM spheres

in contact. The overlapping length (δn) is easily checked

and this is computationally inexpensive, involving only
the calculation of the distance between the centres of

the particles. With this definition, a normal force Fn

between the particles can be defined in the normal di-

rection n̂,

Fn = Knδnn̂, (1)

with Kn a parameter called the normal stiffness whose
value is related to the elastic modulus of the material.

Particles are also allowed to rotate, and hence at the

point of contact xc (which is defined as the middle point

of the overlapping length), both particles have a relative
velocity that represents the relative displacement of the

particle surfaces at that point. This relative velocity is

given by,

vrel = Ω1 × (xc − x1) + v1 −Ω2 × (xc − x2)− v2 (2)

with Ωi, vi and xi the angular velocity, velocity and

centre of the i-th particle. This relative velocity can

be decomposed of normal vn and tangential vt com-

ponents. The tangential component is numerically in-

tegrated to obtain the tangential displacement δt [15].
This displacement is used to determine the tangential

force Ft along the plane tangential to the overlap be-

tween the particles,

Ft = Ktδtt̂, (3)

where t̂ = vt/vt and Kt is a tangential stiffness. This

elastic tangential force represents the effect of static
friction in the absence of roughness of the spherical

particles. To be physically correct, the tangential force

must be bounded by the Coulomb limit [7], and so the

correct tangential force is

Ft = min(Ktδt, µFn )̂t, (4)

which depends on the microscopic friction coefficient µ.
Viscous forces Fv are also added to dissipate the

energy and simulate inelastic collisions. Such forces are

of the form,

Fv = Gnmevn +Gtmevt (5)

which depends on two dissipation constants for the nor-

mal Gn and tangential Gt directions and the effective
mass me of the particle pair.

These forces, and the torques produced by them,

are added together to obtain a net force and torque

for a given particle. The forces that are described in

the following sections, produced by the interaction with
the fluid, are also added to the net quantities. Then, the

equations of linear motion (Newton’s second law) and

for angular motion (Euler’s equations) are numerically

integrated by the leap frog method [24].

2.2 The Lattice Boltzmann Method (LBM)

For the present study, the Lattice Boltzmann D3Q15

scheme was used [11]. In this scheme, the space is di-
vided into a cubic domain where each cell has a set of

probability distribution functions fi, representing the

density of fluid particles going through one of the 15

discrete velocities ei (see Fig. 2). The density ρ and
velocity u at each cell position x can be determined by:

ρ(x) =
∑15

i=0 fi(x)

u(x) =
∑

15

i=0
fi(x)ei

ρ(x)

(6)

Each distribution function has an evolution rule de-

rived from the Chapman Enskog expansion of the Boltz-

mann equation [22],

fi(x+ eiδt, t+ δt) = fi(x, t) +Ωcol, (7)
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Fig. 1 The collision of two DEM particles is detected by
the overlapping length δn, which also defines the normal and
tangential forces as explained in the text.
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Fig. 2 The LBM cell of the D3Q15 showing the direction of
each one of the 15 discrete velocities

where x is the position of the local cell, δt is the time

step and Ωcol is a collision operator representing the re-

laxation processes due to the collision of the fluid par-

ticles. For this study, the widely accepted Bhatnagar-

Gross-Krook (BGK) model for the collision operator [19]
is used, which assumes that the collision processes drive

the system into an equilibrium state described by an

equilibrium function feq
i ,

Ωcol =
δt

τ
(feq

i − fi) (8)

with τ being the characteristic relaxation time. It has

been shown that the Navier Stokes (NS) equations for

fluid flow [10] are recovered if,

feq
i = ωiρ

(

1 + 3
ei · u

C2
+

9(ei · u)
2

2C4
−

3u2

2C2

)

(9)

and the kinetic viscosity of the fluid ν is given by,

ν = (τ − 0.5)
δ2x
3δt

(10)

with C = δx/δt, a characteristic lattice velocity defined

by the grid spacing δx. Eq. 10 imposes a constraint

on the choice of τ , which must be greater than 0.5 for
the viscosity to be physically correct. It is also known

that values close to 0.5 produce unstable numerical be-

haviour [22] due to the non-linearity of the NS equa-

tions; hence it is advisable to keep its value close to
one.

The LBM is used to represent compressible fluids.

There is an equation of state relating the density at a

given cell and the pressure p at that cell. For the case

of the model described above, such a law is the ideal
gas law,

p =
C2

3
ρ, (11)

which defines C/
√
3 as the speed of sound of the simu-

lated fluid. Perfect incompressibility cannot be achieved

with this LBM scheme, and the incompressibility limit

is taken as the condition where the density fluctuations

are small compared with the average density. Compress-
ibility, measured by quantities such as the Mach num-

ber, can be tuned by the parameter C as deduced by

the equation of state. This will require varying either

the time step or the lattice spacing, which may increase
the computational requirements for a given simulation,

and hence must be done with care.

Body forces, such as the gravity force [16], are sim-

ulated by a net force introduced for each cell. The net

force Fb modifies the velocity used in the calculation of
the equilibrium function as follows,

u′ = u+
δtFb

ρ
. (12)

In the case of gravity, the force is simply Fg = ρg where

g is the gravitational acceleration [2].

2.3 The coupled method

With the LBM and DEM explained separately, the al-

gorithm for their coupling can be explained in detail.

The method is an implementation of the one introduced
by Owen et al [18] for spherical particles.

One sphere moving through the lattice represent-

ing the fluid will intersect some LBM cells. Inside the
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spheres, the cells will be fully occupied by the DEM

sphere. Outside the DEM sphere, the volume fraction

occupied by it will be zero. In the cells comprising the

sphere surface, the volume fraction occupied by the

DEM particle takes values between 0 and 1. The cou-
pling law must ensure a smooth transition as the sphere

invades and vacates the LBM cells during its movement.

This coupling law modifies Eq. 7 to account for the vol-

ume occupation fraction ε,

fi(x+eiδt, t+δt) = fi(x, t)+(1−Bn)

(

δt

τ
(feq

i − fi)

)

+BnΩ
s
i ,

(13)

where Bn is a weight coverage function of εn for the
n−th cell, and Ωs

i is a collision operator representing

the change of momentum due to the collision of the

DEM sphere within the LBM cell. The collision oper-

ator between LBM cells and DEM spheres takes the

following form [17,12],

Ωs
i = [fi′(x, t)− feq

i′ (ρ,vp)]− [fi(x, t)− feq
i (ρ,vp)] ,

(14)

with the symbol i′ denoting the direction directly op-

posing the ei vector and vp the velocity of the DEM
sphere at the cell position (x),

vp = Ω× (x− xCM ) + vCM , (15)

which depends on the sphere velocity vCM , angular ve-

locity Ω and position xCM of the sphere’s center of

mass. This is a modification of the commonly used
bounce-back condition within cells tagged as solids [22].

In fact if vp = 0 and ε = 1, the bounce-back condition

is recovered.

The weight coverage function has also a proposed

form [18] in terms of the volume fraction ε,

Bn(ε) =
εn(τ − 1/2)

(1− εn) + (τ − 1/2)
, (16)

which has been empirically deduced to accurately sim-

ulate Poiseuille flow [12].

The total force F over a DEM sphere is taken as the
addition of the change of momentum given by each of

the cells that the sphere covers,

F =
δ3x
δt

∑

n

Bn

(

∑

i

Ωs
i ei

)

. (17)

And the torque T is calculated similarly,

T =
δ3x
δt

∑

n

[

(xn − xCM )×Bn

(

∑

i

Ωs
i ei

)]

, (18)

Fig. 3 The DEM sphere interacting with an LBM cell
(cube). The blue lines are the portion of edges covered by
the DEM sphere.

where it is assumed that the units of ei are the same

units of the C parameter.

An important implementation issue is the calcu-

lation of the volume fraction occupied by the DEM
spheres ε. This issue is extensively discussed in [18]

where several schemes, and their strengths and draw-

backs, are described. The conclusion is that direct com-

putation of the intersection volume is computationally

expensive, and hence impractical for a coupled simula-
tion framework. Several methods are proposed includ-

ing the numerical integration of the intersection vol-

ume.

Herein, an efficient way to calculate ε based on the
computation of the portion of edges covered by the

DEM sphere is illustrated and it will be validated in

the following section. In Fig. 3 the algorithm to calcu-

late the volume fraction approximately is shown. The

algorithm is based on the length of an edge existing in-
side the sphere. If an edge is defined as the set of points

between the two limits p0 and p1, then each of these

points p can be described in terms of a parameter s as,

p = p0 + s(p1 − p0), (19)

with s going from 0 to 1. Finding the length inside

the sphere is reduced to finding the the intersection

points with the sphere surface. This is expressed as the
following equation:

(p− xCM ) · (p− xCM ) = R2, (20)

withR the sphere radius. This equation gives a quadratic

polynomial to solve for the parameter s, with two so-

lutions. If the solutions are imaginary then the sphere
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never intersects the edge. On the other hand, if they are

real and both are between 0 and 1 then they represent

the limit points of the intersection segment. Finally, if

one solution is less than 0 or greater than 1 then it is

replaced by the edge limit points p0 and p1, accord-
ingly. The intersection length le is computed for each

of the 12 edges. It is then compared with the total edge

length to obtain the volume fraction,

ε =

∑12
e=1 le
12δx

. (21)

3 Validation

To validate the method, a comparison with the work

carried out by Owen et al [18] is made to measure the
drag coefficient of a sphere immersed into the fluid as a

function of its Reynolds number Re. The LBM domain

is formed by a lattice of 240× 60× 60 cells. The lattice

size step is δx = 0.004m. The DEM sphere is placed
at the domain’s centre and it has a radius of 0.036m,

which is equivalent to 9 LBM cells. The fluid density is

taken as ρ = 1000kg/m3, the kinematic viscosity ν is

10−4m2/s and the time step δt = 1.6× 10−2s. Periodic

boundary conditions are applied in the three directions
and a constant body acceleration of 7.81× 10−5m/s2 is

applied to the LBM cells, allowing the drag coefficient

to be calculated over a wide range of Reynolds numbers.

Fig. 4 shows a plane slice plot with the velocity field
surrounding the DEM sphere, for a Reynolds number

of 30, preventing the formation of eddies behind the

sphere.

Fig. 4 Cross-sectional contour plot of the fluid velocity field
surrounding a DEM sphere for Re = 30. The colourmap is
proportional to the fluid velocity.

To calculate the Reynolds number, the sphere’s di-

ameter D is used as the characteristic length, and the

velocity is taken as the average of the velocities of the

unoccupied cells vave,

Re =
vaveD

ν
. (22)

The drag coefficient CD is calculated by the reaction
force x component, Fx over the sphere (Eq. 17) and the

average fluid density ρ,

CD =
2Fx

ρv2aveπD
2/4

. (23)

Fig. 5 shows the calculated drag coefficient as a func-
tion of Re. For comparison, the results from the pre-

vious study of Owen et al [18] are also shown. Addi-

tionally, an empirical correlation [25] with experimental

data is also presented:

CD ≈
24

Re
+

6

1 +
√
Re

+ 0.4 (24)
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Fig. 5 Sphere drag coefficient CD as a function of the
Reynolds number Re.

As can be seen, the method to calculate the volume

fraction ε from Eq. 21 gives very similar results to the

method used by Owen et al [18]. It is also relatively
easy to implement, requiring few calculations ε. One

point of concern is when the DEM sphere intersects

the LBM cell, but not at its edges. In this case, al-

though the real volume fraction is non-zero, Eq. 21 will

give ε = 0. This is usually solved by ensuring that the
DEM sphere covers a wide range of LBM spheres. In the

present case, the radius of the DEM sphere is nine LBM

cells, which seems sufficient to reproduce the reported

results obtained using similar methods, eliminating this
problem.

Another validation for spheres is the simulation of

the Magnus effect. The Magnus effect is a lift force
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applied over a spinning sphere due to the fluid flow

asymmetry introduced by the angular velocity. It is an

important validation to check the effect the coupling

with rotating spheres, which is a problem that is going

to be observed during the erosion simulations later on.
Fig. 6 shows the velocity field disturbed by the spinning

sphere. The sphere is spinning in a counter-clockwise di-

rection, dragging the fluid close to it. The net effect is

a decrease in the fluid’s velocity at the top portion of
the sphere due to this drag and a velocity increase at

the bottom. If the system is considered as an inefficient

air pump, air will build up at the top causing higher

pressure at this point. This pressure gradient pointing

downwards generates a force over the spheres in the
same direction. The Magnus effect is commonly found

in ball sports such as baseball and soccer, where it gives

the ball a distinct trajectory. With this force, a lift co-

efficient can be defined in complete analogy to the drag
coefficient,

CL =
2Fy

ρv2aveπD
2/4

, (25)

Fig. 6 Cross sectional contour plot of the fluid velocity field
surrounding a spinning DEM sphere with an angular velocity
ω. The colourmap is proportional to the fluid velocity

Hölzer and Sommerfeld [13] conducted a number of

simulations on the Magnus effect with a similar LBM

scheme, without coupling it with the DEM. A dimen-
sionless variable called the particle’s spin number SPa is

defined for comparison with the results of this previous

study,

SPa =
ωD

2vave
, (26)

with ω the sphere’s angular velocity.

Simulations varying SPa were conducted for Re =

30, a value that ensures that eddies do not appear in

the simulation. Fig. 7 shows the dependence of the lift

coefficient produced by the Magnus effect. It also shows

the results obtained by Hölzer and Sommerfeld, and
a fairly good match with the results from this study

can be seen. For this small Reynolds number range the

dependence on CL on SPa, and therefore on the angular

velocity, appears to be linear.
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Fig. 7 Sphere lift coefficient CL as a function of the particle’s
spin number SPa.

4 Simulation of the erosion phenomenon

4.1 DEM stage

The first stage of the study involves a DEM simula-

tion of the soil skeleton sedimentation until it reaches

equilibrium. In order to do this, the larger spheres are
placed above the smaller spheres. Both arrays of parti-

cles are initially positioned in a hexagonal closed pack-

ing and some spheres are erased randomly to introduce

some disorder. There are in total 12907 small particles
with a diameter of 0.4mm and 30 big particles with a

diameter of 3mm. The spheres are placed inside a rect-

angular container surrounded by rigid walls of dimen-

sions 2cm × 2cm × 4cm. Table 1 shows the parameters

used for the DEM model.

4.2 Coupled simulation

After equilibrium is reached, the rectangular box is di-

vided into a set of 200× 200× 400 LBM cells, produc-
ing a lattice spacing constant δx = 0.1mm. This spac-

ing is required to ensure that there are enough cells to

cover the smallest spheres. By the validation examples
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Fig. 8 DEM deposition simulation stage. The particles are
free to fall by gravity until equilibrium is reached.

Table 1 Microscopic constants for the DEM stage.

Constant Description
Kn = 9.8kN/m Contact normal stiffness
Kt = 4.9kN/m Contact tangential stiffness
µ = 0.4 Microscopic friction coefficient
gn = 0.8s−1 Normal viscous coefficient
gt = 0.0s−1 Tangential viscous coefficient
g = 9.8m/s2 Gravity acceleration

presented above eight LBM cells covering the diame-

ter is enough to obtain accurate results. However, it

also poses a problem since 16 million LBM cells occupy

roughly 24 GB of memory with double precision vari-

ables, which is an amount difficult to find in common
desktops. Coarser lattices could be used, but then there

may not be enough resolution to properly describe the

effect of the LBM fluid on the small particles. Unfortu-

nately, due to this large memory requirement and the
time that the simulation takes, it was not possible to

consider more DEM particles in the sample. For this

reason, more realistic particle size distributions will be

impossible to be simulated with the current available

computational resources.

Fig. 9 shows the DEM sample immersed into the
LBM grid. Due to the realistic value taken for the grav-

ity acceleration, the lattice time step is δt = 1.01 ×

10−5s. Since the normal and tangential stiffnesses are

small (very soft particles), this time step is enough to
ensure the stability of the DEM method [18]. Also, due

to the size of the DEM sample, the maximum defor-

mation given by the weight of all the spheres over the

spheres at the bottom is less than 0.001 times the small-

est radius, which may be considered negligible. The vis-

cosity of the fluid (Eq. 10) is 1.65×10−5m2/s. Pressure

boundary conditions are applied to the bottom and top

faces as explained in [9], by controlling the densities
at the limit cells using Eq. 11. Periodic boundary con-

ditions are set across the other directions. Gravity is

only imposed over the particles, and not over the fluid.

Therefore, the driving force of the fluid is not a hy-
draulic head gradient but a pressure one. The reason for

this is the high compressibility of the flow, which will

concentrate a high density of fluid at the bottom due

to gravity. A solution for this is to take a more realistic

equation of state for the fluid, something that is allowed
in the LBM as shown in [8], but for the present study

such sophistication was unnecessary. The LBM fluid

density is set to an equilibrium value of 1000kg/m3. A

linear gradient pointing upwards is fixed at the begin-
ning by imposing a gradual increment in density from 0

to 50kg/m3 at the bottom, which translates to a pres-

sure difference of 1.63kPa across the total height. This

pressure gradient was chosen after observing no signif-

icant movement of the particles with smaller values.
Lastly, there is a fifth wall perpendicular to the z direc-

tion and 2mm above the lower boundary. The purpose

of this wall is to prevent the spheres from coming into

contact with the pressure boundary and to leave some
space for the pressure of the fluid to build up.

Snapshots of the process at different times are shown

in Fig. 10. The red soil in the figure formed by the

smaller particles is slowly forced into the void spaces

formed by the larger spheres. At the same time, the
large particles slowly sink into the gradually emptied

lower layers. The effect of the pressure gradient is there-

fore more significant than gravity for the smaller spheres

and less significant for the larger ones. These different
effects across distinct particle size ranges are the focus

of this study.

Similar studies have been carried out with physical

models [20]. At the laboratory scale, more particles and

larger simulation times can be considered, but at the
same time the internal pressure profile and the dynam-

ics of the individual particles are difficult to measure.

In the experimental study, the porosity of the soil was

measured at different heights by means of the novel Spa-

tial Time Domain Reflectometry (Spatial TDR) tech-
nique. The reported values for the porosity are close to

0.4 for areas where the soil is not mixed and as low as

0.2 at the points where the smaller spheres are entering

the larger voids. In the simulation presented in this pa-
per, measuring the porosity is a matter of adding the

volume fraction ε (Eq. 21) for cells at a given height and

dividing it by the total number of cells for that layer.
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2mm

4cm

Fig. 9 DEM-LBM simulation stage. The transparent
colourmap is proportional to the fluids pressure showing a
pressure gradient pointing upwards. A buffer of 2mm between
the smallest particles and the lower boundary is left for the
pressure to build up unaffected.

(a) (b)

(c) (d)

Fig. 10 Snapshots at different times of the DEM sphero-
duck simulation diving into the LBM pool. The video
is attached as supplementary material. The transparent
colourmap is proportional to the fluids pressure.

The results for different simulation times are shown in

Fig. 11. Areas where the porosity is equal to 1 are de-

void of particles, in particular the buffer of 2mm above

the lower boundary (Fig. 9). Initially, the zones filled

with particles have a porosity close to 0.4. As time
moves on, and the different spheres start to mix, the

porosity at the infiltration zones decays to values close

to 0.2, in complete agreement with the experimental

studies [20]. Also, the mixing zone is moving upwards
over time and getting broader as the larger spheres start

to sink.
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Fig. 11 Porosity φ profile as a function of the height.

After this qualitative match with experimental re-

sults, an analysis of the effect of the fluid on the differ-

ent soil components is carried out. For particles inside of

a constant gradient the net force over a sphere is propor-
tional to the pressure difference between the end points

of the sphere and the superficial area. Since the pressure

difference is also proportional to the diameter under a

constant gradient, the net force is proportional to the

cube of the radius. Gravity is also proportional to the
cube of the radius, so there is no disparity in the effect

of the fluid between the different particle sizes. There-

fore, under a constant gradient the particles should not

mix. Following this train of thought, the pressure fluc-
tuation profile is plotted in Fig. 12. The initial linear

pressure decay is shown. However, soon after the simu-

lation starts, the pressure profile dramatically changes

from the linear configuration to a sigmoid one. Most

of the pressure variance is concentrated inside the soil
with the smallest particles. Before the particles mix,

the porosity of both components is the same, as seen in

Fig. 11. Consequently, the abrupt pressure decay in the

lower layer must be due to the decreased constriction
size. After the mixing starts taking place, the abrupt

pressure decay moves to the mixing zone with lower

porosity.
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Fig. 12 Pressure difference with the top boundary ∆p ver-
sus height.

Fig. 13 shows the pressure gradient, calculated nu-

merically, as a function of the height. The gradient is

constant at the initial configuration. After 40s there is
a noticeable pressure gradient in the zone occupied by

the small particles. However, during and after the 80s

mark, the gradient is mostly concentrated in the mixing

area with the lowest porosity as seen in Fig. 11. This

is an effect that actually increases the mixing process
by accelerating the small particles that are filling the

large voids at the interface between the two granular

samples. The effect on the mean velocity of the small

particles can be observed in Fig. 14, in which it is evi-
dent that the particles just above the mixing zone are

the most mobile ones. In fact, as the process evolves,

the velocity of the particles above the mixing zone is the

largest, implying that most of the momentum transfer

between the fluid and the particles occurs at this point.
The fluid average velocity is shown in Fig. 15. It can

be seen that it grows in time from being zero initially

(t = 0s) to a maximum value at the zone occupied by

the small particles. At the same point that the small
particles are accelerated (as seen in Fig. 14), the veloc-

ity of the fluid goes suddenly to zero illustrating that

at this point full momentum transfer occurs.

A third effect observed from the simulation is a simi-
lar increase in the angular velocity of the particles at the

same point that the maximum velocity is found. Fig. 16

shows the angular velocity as a function of height. A

clear correlation is observed between the behaviours

shown in Figs. 14 and 16. It may be concluded then
that the fluid is also transferring angular momentum

to the small particles. Fig. 17 shows the small parti-

cles coloured by their velocity. The particles with the

highest velocities are surrounding the large particles.
Hence, this angular velocity gain further improves the

mobility of the particles into the large void spaces by

allowing them to roll against the larger particles, effec-
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Fig. 13 Pressure gradient versus height.
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Fig. 14 Average velocity of the small particles versus height.
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Fig. 15 Average fluid velocity versus height.

tively reducing friction. This effect is very difficult to
reproduce by continuum models, in which the conser-

vation laws considered are usually the conservation of

linear momentum and energy. This opens a novel ques-

tion about the potential effect of the individual particle
shapes on the erosion rates in soils with more realis-

tic, which means non-spherical, shapes. Particle shape

and interlocking have the secondary effect of hindering
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particle rotation [6] and, by the observations presented

herein, will also force the particles to slide instead of

roll against each other. This will produce a greater re-

sistance against mixing. A possible way to study the

effect of particle shape using the current model is the
introduction of a rolling resistance method [1], and it is

the opinion of the authors that this should be the goal

of future studies.
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Fig. 16 Average angular velocity of the small particles ver-
sus height.

Fig. 17 Small spheres coloured by their angular velocity (red
highest, blue zero). The large spheres are not shown.

5 Conclusions

A numerical scheme for the simulation of contact ero-

sion is presented coupling the mechanics of a driving

fluid with rigid particles representing the solid matrix.

The fluid is modelled with the Lattice BoltzmannMethod

(LBM) and the solid particles are simulated with the

Discrete Element Method (DEM). A coupling scheme

is proposed with physically correct momentum transfer
at some discrete points around the particles.

The scheme is validated against simulations of the

drag coefficient for a broad range of Reynolds numbers

and compared with published numerical results and ex-

periments. A second validation is carried out by simu-

lating a spinning sphere inside a flowing fluid. The Mag-
nus effect, by which the spinning sphere suffers a force

perpendicular to the average fluid velocity, is calculated

as a function of the angular velocity and compared with

previous numerical results. These two validation exam-
ples show that the proposed approach is physically cor-

rect.

After validation, the simulation framework is used

to model a simple erosion process inside a soil formed by

two distinct particle sizes. Initially, a DEM simulation

stage is carried out to prepare the sample. In this stage,

both fractions of particle sizes are separated and then
allowed to fall by gravity. At the end of this stage, a

solid matrix is built with the larger spheres at the top

being supported by the smaller ones.

The second stage introduces the fluid with a pres-

sure gradient opposing gravity. A first comparison is

done with the results obtained by experiments in pre-
vious studies [20] with a setup resembling the simulated

situation. In the experiments it was observed that each

soil component separately has a porosity of approxi-

mately 0.4. However, as the simulation evolves, there is
a mixing zone in which the small particles start invad-

ing the void spaces of the larger ones, with a reduction

of the porosity to 0.2, which is in complete agreement

with the experimental results.

A micromechanical analysis follows in which three

different effects are observed. The first effect is an in-
crease in the hydraulic gradient along the space occu-

pied by the small particles. As a consequence, there is a

boost to the buoyancy experienced by the smaller par-

ticles, which drives them upwards into the layers with

larger particles. This boost is caused by the reduced
constriction size of the small particles.

The second effect is a sudden reduction in the fluid’s
velocity just below the mixing zone. This is followed by

an increase, at the mixing zone, of the smaller parti-

cle velocities. Therefore, there is a full momentum ex-

change at the mixing zone between the particles and
the fluid, which greatly reduces the hydraulic gradient

at this height. It may be said that the significant reduc-

tion in porosity forces the fluid to push the spheres up



D
 R

 A
 F

 T

A micro-mechanical approach for the study of contact erosion 11

at this height, which produces the particle acceleration

reported herein.

Finally, the particles are able to roll, an effect which

is difficult to model with continuum approaches. In par-
ticular, it is observed that the particles roll with higher

angular velocities at the mixing zone. This effectively

reduces the friction between the smaller and larger par-

ticles, which further increases the erosion rate. A rele-
vant question arises as to how the particle shape will

affect the erosion rate since a particle’s shape effectively

hinder its rotation.

The framework presented herein has revealed im-

portant effects present in erosion processes in soil with

mixed particle sizes. Although the size of the simulated

sample was small, in the future with the advent of ever-

growing computational resources, the same model could
potentially be used with a realistic number of particles

and at field scale. Even now, more situations could be

simulated to formulate constitutive models and advance

the prediction of erosion and suffusion processes.
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