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Abstract This paper presents a study on the macro-
scopic shear strength characteristics of granular assem-

blies with three- dimensional complex-shaped particles.

Different assemblies are considered, with both isotropic

and anisotropic particle geometries. The study is con-

ducted using the Discrete Element Method (DEM), with
so-called sphero-polyhedral particles, and simulations

of mechanical true triaxial tests for a range of Lode

angles and confining pressures. The observed mathe-

matical failure envelopes are investigated in the Haigh-
Westergaard stress space, as well as on the deviatoric-

mean pressure plane. It is verified that the DEM with

non-spherical particles produces results that are quali-

tatively similar to experimental data and previous nu-

merical results obtained with spherical elements. The
simulations reproduce quite well the shear strength of

assemblies of granular media, such as higher strength

during compression than during extension. In contrast,

by introducing anisotropy at the particle level, the shear
strength parameters are greatly affected, and an isotropic

failure criterion is no longer valid. It is observed that

the strength of the anisotropic assembly depends on the

direction of loading, as observed for real soils. Finally

simulations on a virtual shearing test show how the ve-
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locity profile within the shear band is also affected by
the grain’s shape.
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1 Introduction

The mechanics of granular media is a current subject

of intensive study from both engineers and physicist.
Several theoretical models have existed, ranging from

elasto-plastic models [1] to more elaborated theories

such as hypo-plasticity [2]. Almost all of these theo-

ries are built from a common template: a relationship

between the stress tensor σ (or stress rate σ̇) and the
current strain tensor ε as follows,

[σ, σ̇] = f(ε), (1)

which is true for isotropic materials. However anisotropy,
and more specifically cross or vertical anisotropy, is

commonly found in geological materials. The origins of

this anisotropy are many. For instance, due to geological

history, rocks may have internal fractures aligned to a

particular direction; or granular assemblies of elongated
particles may have a preferential direction of alignment

which defines their structure. Regardless of its origin,

anisotropy has the same effect on modelling, it changes

the fundamental template of Eq. 1 to include a depen-
dence on the coordinate system orientation and makes

the problem considerably more complex. Furthermore it

introduced non-coaxiality, i.e. the principal systems of

the stress and strain tensors are not necessarily aligned.

Considering that the cross anisotropy is always along

a preferential direction, defined as the director vector n
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in literature [3], the template for constitutive models of

cross-anisotropic media is:

[σ, σ̇] = f(ε,n). (2)

Models based on the director formalism have been suc-

cessful in describing some feature of the mechanical be-

haviour of anisotropic rock formations [4,3]. However,

finding the correct form of the material parameters for
this models is challenging since experimental data is

scarcely found in the literature, a problem addressed

by Kolymbas et al recently [5].

The purpose of this paper is to fill this gap by pro-
viding new data, based on DEM simulations for loose

granular materials. In this paper, only anisotropy caused

by the particle geometry is considered. To achieve this,

the Voronoi sphero-polyhedra technique, introduced by
the authors in a previous work [6] is used. The Voronoi

construction allows some control over the particle ge-

ometry while still having a random configuration. A

similar work was conducted before using the Voronoi

construction in 2D by Peña et al [7]. However, there
are some features of the mechanical behaviour of granu-

lar assemblies that can only be studied in 3D situations

such as the shape of the failure envelope which will be

addressed in this paper.

This paper is structured as follows: In Sec. 2 a brief

description of the Voronoi sphero-polyhedra method is

presented; in Sec. 3 the description of the simulation
set-up for a True Triaxial Test (TTT) is shown in Sec. 3

followed by the results obtained for isotropic (Sec. 4)

and anisotropic (Sec. 5) samples. Sec. 6 presents some

results of virtual shearing test simulations and their

dependence on the particle’s geometry. Finally, in Sec. 7
the conclusions for this work are presented.

2 Methods

Cubic ensembles of particles are mechanically loaded

virtually and the resulting deformations are observed.

The kinematics and dynamics of each single particle are
computationally represented and the macroscopic be-

haviour is observed. The main innovation of the method

employed here is the use of a technique for smooth-

ing the particles, in which all edges have the shape of

pharmaceutical pills or capsules. The resulting particles
are called sphero-polyhedra (see, e.g., [8,9,6,10,11,12]).

Basically, all edges are swept by spheres, turning them

into capsules, where the radiusR of the sweeping sphere

defines the sphero-radius of the particle. The geometry
of each particle is defined by a set of vertices, edges,

and faces. This technique hugely simplifies the numeri-

cal method, since now the contact forces have a unique

definition, contrary to schemes employing polygons or

polyhedra (see, e.g., discussion in [6]).

To generate the packing, the Voronoi tessellation

method is used as described in the Voro++ library im-

plemented by C. Rycroft [13]. Once the Voronoi array is

obtained, each particle is eroded and dilated by a spher-
ical element of radius R (the sphero-radius). The result

is an array of polyhedral particles with rounded corners

and without any initial overlap or voids between them,

i.e. a close-packing. Fig. 1 illustrates a cubic packing of
10648 Minkowsky-Voronoi sphero-polyhedra, which is

adopted as the experimental specimen for the numerical

simulations of true triaxial tests. In Sec. 5, a method to

employ this construction to generate anisotropic spec-

imens is described in detail. For more information on
this particle generation method, please refer to [6].

Fig. 1 Cubic packing with 10648 quasi-general (sphero-
polyhedra) particles generated by means of the Voronoi-
erosion technique.

3 True triaxial test

To elucidate the form of the relationship between stresses

and strains, usually the sample is subjected to different

stress configurations and the resulting strains are mea-

sured. For this purpose the True Triaxial Test (TTT) is
a convenient apparatus to obtain this information. The

TTT apparatus is composed by a system of six rigid

plates forming a parallelepiped. Because the DEM code

employed in this work can handle polyhedral particles,
the loading plates of the apparatus are also DEM parti-

cles. This is very convenient, since no change to the code

is necessary in order to implement the contact between
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the loading plates and the granular material represent-

ing the specimen. The friction coefficient between the

plates and the particles can easily be controlled; here,

the friction coefficient is set to zero simulating fully-

lubricated walls.
Forces are applied to the plates of the virtual ap-

paratus according to a pre-defined stress path. To cal-

culate the stresses, the cross-sectional areas for each

direction are updated as the plates move. Stresses are
defined as negative during compression (Classical Me-

chanics convention). Principal strain components are

calculated by the change in the distance between oppo-

site plates divided by their initial separation. The fol-

lowing Continuum Mechanics quantities are calculated:

pcam = −
σx + σy + σz

3
(3)

qcam =

√

(σz − σx)2 + (σx − σy)2 + (σy − σz)2
√
2

(4)

εv = εx + εy + εz (5)

εd =

√
2

3

√

(εz − εx)2 + (εx − εy)2 + (εy − εz)2 (6)

Therein, σi are the principal stress components, and εi
are the principal strain components, pcam is the nega-
tive of the Cambridge mean stress invariant [14], qcam
is the Cambridge deviatoric stress invariant, εv is the

volumetric strain, and εd is the deviatoric strain.

To verify the shear strength parameters of cubic as-

semblies of granular media subject to the combination
of three stress components, the stress paths illustrated

in Fig. 2 can be applied. These allow the construction of

the failure envelopes in the Haigh-Westergaard space.

Each path is described as follows:

– (1) Initial confinement of the specimen by means of

isotropic stresses;

– (2a) Conventional (cylindrical) compression tests with
constant lateral stresses and increasing vertical stress;

– (2b) Conventional (cylindrical) extension tests with

constant vertical stress and increasing lateral stresses;

– (3) p-constant tests with a combination of stresses

such that a pre-defined constant Lode angle (θ) can
be reproduced on the octahedral plane (see Fig. 3).

These paths vary from extension (θ = −30◦) to com-

pression (θ = +30◦).

The Lode angle is illustrated in Fig. 3 and is defined

according to the following expression:

θ = 30◦ − arctan

( √
3(σx − σy)

2σz − σx − σy

)

. (7)

failure envelopes compre
ss

ion

extensio
n

(1)

(2a)

(2b)

(3)

Fig. 2 Applied stress paths.

Fig. 3 Octahedral plane and definition of Lode angle θ.

Stress-based failure criteria can be defined by ob-

serving either the peak or the residual stresses attained

in mechanical tests, such as triaxial tests. For instance,
the ultimate stresses measured in triaxial tests with in-

creasing deviatoric stresses can be used for this defini-

tion. Results from triaxial tests can be used to define

failure criteria regarding either the macroscopic friction

angle under compression (θ = +30◦) or the friction
angle under extension (θ = −30◦). Only one of these

two angles is necessary for a mathematical model. In

this paper, the results of friction angles under compres-

sion φcomp are thus considered. After obtaining this sin-
gle material parameter, the following criteria are fitted

to the simulated data: Mohr-Coulomb (see, e.g., [15]),

Matsuoka-Nakai [16], and Lade-Duncan [17].

The Mohr-Coulomb failure criterion predicts a lin-

ear relationship between qcam and pcam for the stress
states at failure and can be mathematically expressed

according to (disregarding cohesion):

σ∗

1
− σ∗

3

σ∗

1
+ σ∗

3

= sinφcomp (8)

Therein, σ∗

i are the sorted (increasing) principal stress

values. With this expression, the shear strength under

extension will be smaller than that under compression.
Therefore, the shape of the Mohr-Coulomb failure en-

velope is of a deformed hexagon when viewed in the

octahedral plane.

The Matsuoka-Nakai [16] failure criterion predicts

the same shear strength as the Mohr-Coulomb failure
criterion, for both compression and extension. For plane

strain or when the Lode angle is in the range −30◦ <

θ < +30◦, the Matsuoka-Nakai failure criterion predicts
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Table 1 Microscopic constants for the DEM analyses.

Constant Description
Kn = 100kN/m Contact normal stiffness
Kt = 50kN/m Contact tangential stiffness
µ = 0.4 Microscopic friction coefficient
gn = 0.8s−1 Normal viscous coefficient
gt = 0.0s−1 Tangential viscous coefficient
β = 0.12 Rolling resistance stiffness coefficient

(only for spheres with rolling resis-
tance)

η = 1.0 Plastic moment coefficient (only for
spheres with rolling resistance)

a higher shear strength than the Mohr-Coulomb crite-

rion. The Matsuoka-Nakai failure criterion is directly

defined based on the three characteristic invariants Ii
of the stress tensor according to:

I1I2
I3

= 9 + 8 tan2 φcomp (9)

Another failure criterion similar to the Matsuoka-

Nakai failure criterion is the Lade-Duncan [17]. This cri-

terion predicts a higher shear strength under extension

than that predicted by the Matsuoka-Nakai or Mohr-

Coulomb failure criteria. The Lade-Duncan criterion is
given by:

I3
1

I3
=

(3− sinφcomp)
3

(1 + sinφcomp)(1 − sinφcomp)2
(10)

4 Results for isotropic specimens

Firstly, the behaviour of cubic assemblies of isotropic

granular media is investigated using the DEM code.

The applied stress path is the one numbered (3) in

Fig. 2, which is enforced after an initial isotropic com-

pression is applied (path (1) in Fig. 2).
Simulations of true triaxial tests are carried out with

assemblies of sphero-polyhedra (Fig. 1). The packings

are randomly generated as described earlier in this pa-

per. The microscopic constants adopted in all analyses
are organised in Table 1. In the following, pcte means

constant pcam.

Tests with sphero-polyhedra are carried out in or-

der to verify whether the macroscopic shear strength

of a cubic packing of particles can be represented by a
linear model or not. The linear model here applies to

the relationship between deviatoric and mean stresses.

The compression (θ = +30◦) path with p-constant is

employed to represent this.
Results for 10,648 Voronoi particles are shown in

Fig. 4, in which it can be observed that a linear fitting

can be adopted in order to model these results. The

results are compared with the response of two- sphere

assemblies. One is a pure spherical specimen and the

other uses the rolling resistance model to represent the

effect of shape [18,19,20]. In this paper, the rolling re-

sistance implementation follows the one described in
reference [21]. Considering that it is a minor component

of this study, only a brief explanation is given herein. In

this scheme, the rolling resistance is a fictitious moment

applied to the particles that opposes rolling movement.
This moment is defined by two constants: the rolling re-

sistance stiffness constant β, which controls the linear

grow of the resistance moment with the rolling angle;

and the plastic moment coefficient η, which sets a limit

to the maximum value for the resistance moment.
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Fig. 4 Tests with 10000 spheres and 10648 Voronoi particles
under compression (path (3) with constant pcam).

Geometry plays an important role in the material’s

friction response. As can be seen, a spherical specimen

has a lower shear strength than the Voronoi soil for the
same set of parameters. The authors have explored this

issue before [6], and several other authors have found in-

dependently similar results [22,18,23]. The general con-

sensus is that the rolling of the particles greatly reduces
the overall soil shear strength. Non-spherical shapes re-

strain the particles rolling capabilities and therefore in-

crease the soil shear strength. In fact it has been shown

that ideal spheres without rolling resistance can only

simulate soils with macroscopic friction angles up to a
value of 20◦ [24,25], regardless of the imposed micro-

scopic friction coefficient, a fact that hinders its ability

to reproduce real soils.

The failure envelope for the specimen with rolling
resistance lies between the other two. Therefore it is ex-

pected that by tuning the rolling resistance coefficients,

the Voronoi soil failure envelope can be reproduced with
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sphere assemblies. A recent study by Estrada et al [26]

has shown that indeed rolling resistance can be consid-

ered a parametric representation of shape. However, as

we will shown later on, this is only valid for isotropic

constructions. Obtaining the rolling resistance parame-
ters reproducing the Voronoi particles requires further

analysis and should be the subject of future work.

After the initial simulation by compressing the spec-

imens (θ = 30◦), further simulations are carried out by
changing the Lode angle between −30◦ to 30◦. In Fig. 5

the results of the stress ratio q/p as a function of the

deviatoric strain εd for the Voronoi specimen are shown.
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Fig. 5 Stress ratio as a function of εd for Voronoi particles.

In compression tests, the packing has a higher shear
strength than in extension tests. The reason is that

during extension the particles have more space to rear-

range and move. This movement controls and reduces

the overall shear strength as discussed before. Due to

the close packing of the Voronoi construction there is
no initial compression of the volume and two adjacent

Voronoi particles are prone to start sliding from the

beginning, hence with a small εd ∼ 5% the failure is

reached.
The data obtained with DEM simulations of true

triaxial tests are now plotted in the Haigh-Westergaard

3D space of principal stresses in Fig.6. In particular, a

view along the hydrostatic axis is considered, with fo-

cus on the so-called octahedral plane. This allows the
investigation of an appropriated macroscopic failure en-

velope for isotropic materials. Although the failure en-

velope is a 3D surface in the Haigh-Westergaard stress

space, only its cross-section on the octahedral plane is
drawn, for a fixed pcam value.

For the mathematical definition of a particular fail-

ure criteria with linear deviatoric-mean stress relation-

ship, a constant macroscopic friction angle must be de-

fined beforehand. Either the angle at compression or

extension can be employed for such task. Here φcomp

at compression is considered. In the Voronoi specimen,

the Lade Duncan fits perfectly for all the considered
points. This agrees with Suiker et al [22] findings for

spherical assemblies and also with experiments on real

specimens [17].

−σz ,θ=+30 ∘

−σy −σx

θ=0 ∘

θ=−30 ∘

Mohr/Coulomb

Matsuoka/Nakai

Lade/Duncan

Fig. 6 Failure envelope in the octahedral plane for Voronoi
particles and pcam = 10kPa.
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Fig. 7 εv versus εd for the Voronoi particles with pcam =
10kPa.

Finally, the volumetric evolution of the Voronoi spec-

imen is plotted in Fig. 7. Due to the closely- packed

nature of the Voronoi construction, the last specimen
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starts to expand from the beginning of loading. In real

experiments with sand [27], this volumetric behaviour

is similar; however sometimes an initial compression

is observed, after which expansion arises. Most sand

specimens allow some compression from the beginning.
Therefore, real validation should not consider the closely

packed Voronoi construction as an initial configuration,

but should have an initial sample preparation simula-

tion before the TTT simulation is carried out. For in-
stance, some Voronoi particles could be randomly erased

at the beginning the generate some initial voids before

the isotropic compression.

5 Results for anisotropic specimens

Usually, anisotropy takes the form of cross-anisotropy

[28,29,30] where it is present in only one direction per-

pendicular to a plane wherein largely isotropic. This

especial direction is commonly parallel to the direction
of deposition If the particles have anisotropic shapes,

their deposition will tend to align the particles along

principal planes. To reproduce this behaviour we use

again the Voronoi construction with a modification to
produce an anisotropic array. This method has been

used before in 2D and it has been reported that indeed

this anisotropy strongly affects the macroscopic friction

of the granular specimen [7]. To the best of our knowl-

edge this is the first time that this effect is explored in
3D with the Voronoi construction.

As pointed out in Sec. 2 the isotropic Voronoi tessel-

lation is achieved by having an initial uniform cubic grid

where each cell has a unique Voronoi point in a random
position. We use the same method by considering more

cells along the z axis. The ratio between the number

of cells along z and the other two directions is defined

as the aspect ratio Λ. The cells are still cubic cells be-

fore the Voronoi algorithm is applied, and therefore the
box is no longer cubic but rectangular with a longer z

length. Once the Voronoi tessellation is obtained, the

z dimensions for each particle are stretched until the

desired cubic specimen is obtained. In Fig. 8 several ex-
amples of anisotropic Voronoi constructions are shown.

The total number of particles Np is equal to the total

number of cubic cells. In our case Np = n3Λ, where n

is the number of cells along the horizontal dimension.

We choose n so that Np is as close as possible to 10000.
For instance, for Λ = 1.0 n = 22 and Np = 10648; while

for Λ = 5.0 n = 13 and Np = 10985. Caution should

be taken in the construction of anisotropic specimens.

If the anisotropy axis z, called director in the litera-
ture [31], is not parallel to any of the principal TTT

axes, the stress tensor may have shearing components

and could not be obtained just with the stresses applied

on the TTT lids. By considering the z axis as the di-

rector we may argue that the internal stress tensor and

the applied stresses on the TTT apparatus are coaxial.

For the anisotropic specimens the TTT simulation

is run for two particular Lode angles θ = 30◦ and θ =
−150◦ representing compression and extension along

the z axis respectively. In Fig. 9 the stress ratio M =

q/p is shown for these two Lode angles and five dif-

ferent Λ values. The maximum stress ratio increases
with Λ and it reaches an upper limit when M = 3.0.

When this condition is met the pressure is entirely due

to σz component since σx and σy are equal to zero,

i.e. the stress is align in the z direction. At this point

the lateral apparatus plates have lost contact with the
granular specimen.

This highly anisotropic specimen has a maximum

strength (φ = 90◦) under vertical compression and does

not exert any lateral earth pressure. In contrast, for
the extension along z simulations we observe a different

effect, the stress ratio decreases with the anisotropy. In

this case σz decreases gradually given more freedom to

the system to be deformed by σx and σy. These lateral

stresses are parallel to the particles principal planes and
therefore they can slide easier against their neighbours

which explains the lower shear strength.
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Fig. 9 Stress ratio q/p versus εd for two different Lode
angles θ and five aspect ratios Λ.

The obtained peak stress ratios M = qpeakcam /p for
four Lode angles are shown in Fig. 10. For the com-

pression along the z axis (θ = 30◦) M grows with the

increase of the anisotropic ratio Λ until it reaches an

upper limit M = 3.0 for Λ = 4.0. This corresponds to
a friction angle of φ = 90◦. Therefore, with this stress

configuration a maximum shear strength parameter is

found (φ = 90◦), unless the particles are allowed to
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(a) Λ = 2.0 (b) Λ = 3.0 (c) Λ = 4.0 (d) Λ = 5.0
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Fig. 8 (a-d) anisotropic specimens obtained with the Voronoi construction for different values of the aspect ratio Λ. (e-h) the
failure surface on the octahedral plane for each one of these specimens, the circles are drawn to aid visualise the anisotropy.
The symmetry for each 60◦ is lost as the specimen becomes more anisotropic, i.e. the shear strength for compression along the
vertical axis is different than that along the horizontal axes and the shear strength under extension along the vertical axis is
different to that along the horizontal axes.

break which is ignored in the present model. In contrast,
for extension along the z axis (θ = −150◦) the shear

strength is reduced. Therefore the anisotropic specimen

is susceptible to failure when σz is reduced with con-

fined conditions. For compression along y (θ = −90◦)

the shear strength is gradually reduced while for y ex-
tension (θ = 90◦) it is reduced. This is explained by the

same argument of the alignment of particles principal

planes and the stresses.

The TTT simulations are carried out for the whole
octahedral plane, and not just for the θ = −30◦, 30◦ sec-

tion. It has been found that for each third of the circle

the constant strain rate should be imposed along differ-

ent directions. For future reference we used the follow-
ing simulation programs: for θ = −75◦ to 30◦ the strain

was controlled along the x axis; for θ = 45◦ to 150◦ we

controlled the y axis; and for θ = −90◦ to 165◦ the z

axis.

The simulation results are shown in Fig. 11 for Λ =
1 and Λ = 2. It can be seen that the anisotropic fail-

ure envelope presents symmetry between the x and

y direction but it is deformed along the z direction.

For compression along the z axis (θ = 30◦) there is
an increase in the shear strength while for extension

θ = −150◦ a slight decrease is detected. This cross-

anisotropy agrees qualitatively with results obtained in
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Fig. 10 Friction angle φ as a function of the aspect ratio Λ.

real specimens [28,29,30] where the failure criteria fit-
ted for the compression along the z axis usually overes-

timate the shear strength under compressions along the

x and y axes. This difference between compression along

the horizontal axes is even more pronounced as the as-
pect ratio Λ is increased. This can be further observed

in Fig. 8(e-h), where the shear strength under compres-

sion along the vertical axis becomes much higher than
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that along the horizontal axes, and the shear strength

under extension along the vertical axes becomes smaller

than that along the horizontal axes.

��z , =+30 !

��y ��x

 =0 !

 =�30 !

Fig. 11 Failure envelope in the octahedral plane for the
isotropic Voronoi (Λ = 1) and anisotropic (Λ = 2) specimens
with pcam = 10kPa. The Lade Duncan failure criterion is fit-
ted for the isotropic specimen (solid line, φcomp = 50.6◦) and
for the anisotropic specimen (dashed line, φcomp = 62.1◦).

In Fig. 11, it can be observed that the anisotropic

specimen has a higher shear strength than the isotropic

one for all Lode angles, except for values between θ =

−90◦ and θ = −210◦ — the “bottom” of the dia-
gram. For this portion, the anisotropic specimens shear

strength is slightly lower than that for the isotropic one

because the stress is mainly concentrated along the ver-

tical axis and there is a decrease of pressure along the

direction parallel to the contact planes. Therefore the
particles have slightly more freedom to slide against

each than in the isotropic case. On the other hand, ver-

tical compression of the anisotropic specimen is stronger

because the particles are extremely constrained against
sliding or rolling against their neighbours.

Finally, the volumetric behaviour is shown in Fig. 12

for θ = 30◦ and θ = −150◦ and five values of Λ. For
θ = 30◦ all specimens start dilating from the beginning.

This is due to the close-packing of the Voronoi con-

struction, as discussed above. This dilatancy is more

pronounced as Λ increases. However, this can be ex-

plained by the movement of the apparatus plates. As
was mentioned before, for Λ = 5.0, M = 3.0, which

is equivalent to a friction angle of φ = 90◦, meaning

that the specimen does not fail. At this point the lat-

eral stresses are equal to zero. Since the system started
from an isotropic compression state, the lateral plates

have to expand to reduce the lateral stresses and this

expansion explains the high dilatancy. In contrast, for

θ = −150◦ there is an initial compression for large val-

ues of Λ. In this case, the dilatancy decreases with Λ.

Since the particles are almost planar for large values of

Λ, they slide parallel to their principal planes, no new

voids are produced, and therefore εv is kept small.
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Fig. 12 Volumetric strain εv versus εd for two different
Lode angles θ and five aspect ratios Λ.

6 Shearing test

To further explore the effects of anisotropic grain ge-

ometry, simulations inside a virtual shearing test were

also carried out. As it is well known, at elevated stress

levels the deformation of granular assemblies has the

tendency to localize in narrow shear bands [32,33]. In-
side the shear band, complex granular kinematics are

present, characterised by vortices of particles rolling rel-

ative to each other [33,34].

Is is commonly accepted that the non-uniform defor-

mation within shear bands is associated with the buck-

ling of the force chains sustaining the load [35]. This
buckling is observed mainly in DEM simulations where

the column structures can be identified. The shear band

simulations are usually carry out with spherical ele-

ments [32] but the rolling resistance artefact is intro-
duced to model the effect of shape. Although the rolling

resistance is a valid technique to reduce the effect of ro-

tations, as discussed above, it does not represent the

effect of interlocking due to shape.

A comparative study of the shearing strength for

different Voronoi samples is presented herein. To make
a fair comparison, an initial simulation is conducted

over the spherical sample with the rolling resistance pa-

rameters reported above. The simulation is a shearing
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cell with periodic boundary conditions in the horizon-

tal x direction. The initial container has dimensions of

Lx = 20cm, Ly = 5cm and Lz = 80cm and is filled

with an array of 6000 spheres with an uniform ran-

dom distribution for their radii varying from 0.35 to
0.5cm. The lids perpendicular to the z direction are

kept fixed and are also frictionless. The lids perpendic-

ular to the y direction are modelled with a triangular

pattern to increase roughness, something that is easy to
do with the sphero-polyhedra approach. The sample is

compressed initially with a pressure of 1kPa applied to

the lids across the y direction. After this compression

stage is finished, the triangular lids are moved with a

constant velocity in opposite directions to simulate a
shearing state. The velocity of the shearing lids is cho-

sen to ensure that the inertial number I = γ̇d
√

ρ/P

(d the average particles diameter, ρ the density and P

the pressure) takes a value of 10−5 ensuring a quasi
static state [36]. Fig 13 shows the shearing test setup

for spheres.

Fig. 13 Setup for the shearing test over a sample of spher-
ical elements. The colourmap is proportional to the particles
velocity

The shearband can be observed in Fig. 13 as a thin

band of particles with low relative velocities (blue band).

The velocity profile inside the granular medium behaves
initially as a linear function of the height. Gradually it

becomes S-shaped as the shear strain increases until it

reaches a constant profile and a shear band can be iden-

tified. This type of displacement profile is in agreement
with Cosserat-Continuum theory-based models for sim-

ple shear [32]. Fig 14 shows the final velocity profile. A

shear band can be identified by the variation of the ve-

locity with the height as shown by the horizontal lines

in Fig. 14.
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vx /vwall
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y d/
2

Sphere

Fig. 14 Velocity profile (average particle velocity) as a func-
tion of the height inside the granular sample. Horizontal lines
serve as visual aid to identify the shear band.

The same setup was used for the different Voronoi

samples to determine the dependence of the shearing

test response on the anisotropy factor Λ. For this case
the number of particles was chosen for Λ = 1 to be 75%

of 8000 particles (6000) distributed over a Voronoi lat-

tice of 20x80x5 cells (5 cells along the z direction). the

reason that 25% of the 8000 particles are eliminated is

to mitigate the strong effect of the original array in-
terlocking while keeping the original layered structure.

Grain anisotropy is now introduced along the y axis.

Fig. 15 shows the shearing cell for two samples with

Λ = 1.0 and 5.0. It is evident from the colourmap that
the velocity profile is not the same as for the spheri-

cal soil. Also, although the number of particles is the

same, the spherical soil is more compacted (as seen by

its height) since the spheres are reduced in size to in-

troduce some randomness.

To find the correct velocity profile, the sample must

be sheared gradually until the profile is constant for any
further increase of shear. In Fig. 16 shows the profile for

several values of γ. As can be seen for a value of γ = 0.2

the isotropic sample reaches the steady velocity profile.

This is a consistent fact along all the other values for

Λ and therefore this limit value for γ was used for the
comparative study.

Fig. 17 shows the velocity profile at the steady state

for different values of Λ. As can be seen, a shear band
is not as easily defined for the Voronooi samples as for

the spherical soils. In fact for high values of Λ the ve-

locity profile is almost a linear function of the height.

There is no rolling of particles or vorticity, undoubtedly
due to the shape preventing relative rotations. In fact,

since the particles are flat, they may be considered as

layers sliding against each other which explains the lin-
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(a) Λ = 1.0 (b) Λ = 5.0

Fig. 15 Setup for the shearing test over a sample of Voronoi
elements for two different values of Λ. The colourmap is pro-
portional to the velocity.
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Fig. 16 Evolution of the velocity profile (average particle ve-
locity) as a function of the height inside the granular Voronoi
sample for different values of the shear γ for Λ = 1.0.

ear dependence. This has strong consequences specially

in issues such as the Heat Flux Paradox [34] which was
a disagreement between the heat predicted by simple

shear models and the one measured during the shear

produced by earthquakes. In the simple shear models

the velocity field inside the shear band is assumed to
be linear, and hence a significant number of particles are

sliding against each other, increasing the heat output.

On the other hand, when the velocity profile is S-shaped

and vortices are present at the middle, the produced

heat is significantly lower due to the small number of

particles actually sliding. The difference between the

heat output of both profiles is discussed in [37]. Herein

we have provided numerical evidence that the prefer-
ence of one velocity profile over the other is related the

the shape of the particles inside the shear band.

−1.0 −0.5 0.0 0.5 1.0
vx /vwall

−1.0

−0.5

0.0

0.5

1.0

y d/
2

Λ=1
Λ=2
Λ=3
Λ=4
Sphere

Fig. 17 Velocity profile, at the steady state, as a function
of the height inside the granular Voronoi sample for different
values of Λ and for the spherical geometry.

Finally, the shear stress is also presented for the

different Voronoi soils. Fig. 18 shows the shear stress

measured over the lids for different values of Λ. Lay-

ered structures associated with higher Λ values are eas-

ier to slide and hence offer less resistance to shear while
the isotropic structure offers the maximum shear stress.

The reason is the same as for the election of a velocity

profile discussed above, in the isotropic cases the parti-

cles have to roll against each other to produce relative
displacement while for highly anisotropic samples the

particles slide easily.
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Fig. 18 Shear stress vs. γ produced over the bottom and
op lids for different values of Λ.
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7 Conclusions

The Voronoi sphero-polyhedra scheme presented herein

can be used to study the effect of particle shape with a

more sophisticated approach than the rolling resistance
models previously used. The results of simulations are

presented for Voronoi sphero-polyhedra. In this paper,

both isotropic and anisotropic random Voronoi speci-

mens are considered. As an extension to the original

work of Suiker et al [22], it has been found that the
isotropic Voronoi sphero-polyhedra failure envelope is

well-fitted by the Lade Duncan model. The Voronoi

construction ensures only expansion at the shearing

stage due to its closely-packed nature. The macroscopic
friction angle can reach values as high as 50◦, which are

impossible to achieve for spheres without rolling resis-

tance. Considering that there is experimental evidence

of such high friction angles in sand specimens, it may be

concluded that the individual geometry of the particles
plays a larger role than initially thought.

Also, it has been found that the failure envelope
is strongly affected by particle anisotropy. By inducing

anisotropy at the particles geometry, a deformed fail-

ure envelope with cross-anisotropy, as observed in real

soils and reported in the literature [28,29,30], has been

reproduced.

It has been observed that a strong inherent particle

anisotropy can theoretically produce packings that have
a maximum strength (φ = 90◦) when the loading is par-

allel to the direction in which the geometric anisotropy

is induced (the director axis). Therefore their bearing

capacity is infinite and the exerted lateral earth pres-

sure is zero. In contrast, when the stress configuration
is mainly on the horizontal, the specimen is actually

weaker than the isotropic one and prone to failure for

lower values of the deviatoric stress q.

A final analysis was done over the results obtained

from a shearing test simulation with periodic boundary

conditions. It has been observed in this and previous

studies that the velocity profile inside the shearband fol-
lows a S-shaped behaviour [38,39,32]. In this study, nu-

merical results are presented showing how this velocity

profile under steady shearing conditions is also affected

by the particle’s geometry. In fact while the Cosserat

Continuum based models predict these S-shaped pat-
terns, simpler models assumed linear velocity profiles.

Herein it has been shown that the selection of one ve-

locity profile over the other depends on the particles’

shape. Moreover, the shape anisotropy has been shown
to also affect the measure shear strength of the material

as an extension on the results obtained with the triaxial

test simulations.

Further studies, with different specimen preparation

methods should be carried out. A deposition simulation

under gravity should be carried out prior to the triaxial

test simulation, to observe if after deposition the shear

strength parameters presented in this paper are still
valid. Other effects such as tapping and shaking should

be introduced as well. If after these simulations the par-

ticles’ principal planes are still aligned, it is expected

that the measured shear strength parameters are the
same as the ones reported herein.
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