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This paper presents a study on the macroscopic mechanical characteristics of granular assemblies (dry cohe-
sionless soils) with three dimensional complex shaped (non-spherical) particles. The study is conducted using
the discrete element method (DEM) with the so-called sphero-polyhedra particles and simulations of mechan-
ical true triaxial tests for a range of Lode angles. Focus is given to the strength characteristics. The observed
mathematical failure envelopes are investigated in the Haigh-Westergaard stress space. It is verified that the
DEM simulations with complex particles are more stable than with spheres, either considering virtual rolling
resistance or not. It is also verified that the discrete element method with non-spherical particles produces re-
sults qualitatively similar to experimental data on the Toyoura sand. The simulations reproduce quite well the
strength of assemblies of granular media such as higher strength during compression than during extension.
Finally, it is observed that the Matsuoka-Nakai failure envelope averages very well the simulated data and that
the macroscopic friction angle can be considered constant for the range of mean pressures investigated, both for
spheres and sphero-polyhedra.

1 INTRODUCTION

The mechanical properties of assemblies of natural
grains, such as dry cohesionless soils, are determined
primarily by particle size, surface texture, size distri-
bution, and shape of grains. Another important prop-
erty is the structure of the packing, such as cubic,
pyramidal, or tetrahedral. The packing also affects the
porosity and density. These properties are basically
of physical nature and have great influence on the
macroscopic behaviour such as strength of the assem-
bly. In this paper, attention is given to the capabilities
of a numerical model in predicting the strength of as-
semblies of non-spherical particles. Dense packings
of polyhedron-shaped particles with rounded corners,
the so-called sphero-polyhedra, are considered. Nu-
merical simulations are carried out using the discrete
element method (DEM).

Previous works on the two dimensional proper-
ties of assemblies of polygonal shaped particles are
available (Alonso-Marroquı́n and Herrmann 2002;
Alonso-Marroquı́n and Herrmann 2005; Galindo-
Torres et al. 2010) and some works consider also
three-dimensional particles of non-spherical shapes
(Galindo-Torres et al. 2009; Wang et al. 2010;
Galindo-Torres and Pedroso 2010), although not all
discuss the mechanical behaviour and strength prop-
erties of cubic assemblies, in particular the shape of
the failure envelopes in the Haigh-Westergaard space.

Experimentally, the macroscopic mechanical be-
haviour of granular assemblies can be investigated us-
ing triaxial cells, as is customary in Soil Mechanics.
Cylindrical cells are usually employed; however, with
these cells, only a two dimensional (axis-symmetric)
stress field can be generated. On the other hand, by
using cubical, or true triaxial cells, the investigation
of the three principal components of stress and strains
can be carried out; hence, allowing the observation
of the influence of the Lode angle on the octahedral
plane.

Usually, macroscopic phenomenological criteria
such as the Mohr-Coulomb are fitted to the observed
data collected through triaxial tests. These criteria are
then used to predict the strength of the granular as-
sembly. Loading tests with shearing and stress paths
in which the mean stress is kept constant are conve-
nient for the investigation of the pattern of the peak
stresses on the octahedral plane. Therefore, the shape
of the failure envelope on this plane can be assessed
as well.

Matsuoka and Nakai (Matsuoka and Nakai 1974)
presented a failure criterion that predicts the same
strength for compression and extension as the Mohr-
Coulomb criterion; however its predictions for in-
termediate stresses (influence of the second stress
eigenvalue) exhibit higher strength than the Mohr-
Coulomb criterion – this is often indicated by tests



on soils and other granular media. Moreover, the
Matsuoka-Nakai criterion has a smooth envelope on
the octahedral plane – a great convenience for numer-
ical models – and is product of intensive research on
the mechanical properties of soils, leading to the con-
cept of the Spatially Mobilized Plane (SMP) (Mat-
suoka and Nakai 1977; Nakai 1980; Matsuoka and
Nakai 1982; Nakai and Matsuoka 1983; Matsuoka
and Nakai 1985). The spatially mobilized plane forms
a convenient and rational framework for the definition
of continuum models for granular matter.

Other criteria that define failure envelopes with
similar shape to that of the Matsuoka-Nakai criterion
were proposed in the literature (Argyris et al. 1974;
von Wolffersdorff 1996). However, the lack of con-
vexity of the failure envelopes of some of these cri-
terion may cause problems to numerical simulations
(Pedroso et al. 2008). The main algebraic difference
is that while the Matsuoka-Nakai failure criterion is
defined directly as a function of the characteristic in-
variants Ik of the stress tensor, the other criteria are
defined by functions of the ratio between the devia-
toric (q) and mean (p) stress invariants with respect
to the Lode angle θ; the so-called M = q/p := M(θ)
methods.

A goal of this research is to observe the shape of the
failure envelopes that best fit the results of DEM sim-
ulations; therefore, virtual true triaxial tests are car-
ried out. In the following, the methods are briefly ex-
plained but further details can be found in (Galindo-
Torres et al. 2009; Galindo-Torres and Pedroso 2010;
Galindo-Torres et al. 2011). One key step for the true
triaxial test is the packing generation, which is care-
fully explained here. Afterwards, the modelling of the
virtual true triaxial apparatus is discussed and a brief
review of some common failure criteria in Soil Me-
chanics is presented. Results with spheres considering
(and not) the so-called rolling resistance are presented
as well.

2 METHODS

Cubic ensembles of particles are mechanically loaded
and the deformations are measured. The kinematics
and dynamics of each single particle are computa-
tionally represented and the macroscopic behaviour
is observed. The problem is solved using the dis-
crete element method (DEM) as originally presented
by Cundall and Strack (Cundall and Strack 1979) ex-
cept that some modifications are adopted in order to
account for multi-contact and particles of complex
(quasi-general) shape, including non-convex particles
(Galindo-Torres et al. 2009; Galindo-Torres and Pe-
droso 2010; Galindo-Torres et al. 2011).

A main innovation of the method employed here
is the use of a technique for the smoothing of the
particles in which all edges have actually the shape

Figure 1: Some sphero-polyhedral particles, includ-
ing convex and non-convex particles. All edges are
of capsule-shape due to the smoothing with a given
sphero-radius. Particles can be made of just one ver-
tex, or one edge, or one face

of pharmaceutical pills or capsules (see examples
in Fig. 1). This technique names the particles as
sphero-polyhedra (Alonso-Marroquı́n 2008; Galindo-
Torres et al. 2009; Galindo-Torres and Pedroso 2010;
Galindo-Torres et al. 2011). Basically, all edges are
swept by spheres, turning them into capsules, where
the radius R of the sweeping sphere defines the
sphero-radius of the particle. The faces will then have
a thickness equal to 2R and smooth corners. The ge-
ometry of each particle is defined by a set of vertices,
edges, and faces. Different shaped particles can be
present in the same simulation; thus a complicate mix
of particles of quasi-general shape can be simulated
at the same time (Fig. 1). This technique largely sim-
plifies the numerical method, since now the contact
forces have a unique definition, contrary to schemes
employing polygons or polyhedra.

The mass properties of the sphero-polyhedra par-
ticles are a little more difficult to be calculated than
the mass properties of conventional polyhedra. The
main reason is the rounding (smoothing) of the edges
by applying the sweeping method. Therefore, closed
form equations are unavailable, except, perhaps, for
simple geometries, such as a rounded cube or a tetra-
hedron. To solve this problem, a numerical integration
with the Monte-Carlo method is employed. The inte-
gration finds the volume (hence the mass), the tensor
of inertia, and the centre of mass of the particles by
Monte-Carlo approximations. These procedures also
work for non-convex particles as the ones illustrated
in Fig. 1.

2.1 Particle generation

Dense cubic packings of irregular particles are gen-
erated using the method discussed in (Galindo-Torres
and Pedroso 2010). Due to its importance for the true
triaxial simulations in this paper, the method is further
explained here. The method is named Voronoi-erosion



Figure 2: Voronoi tessellation generated by Voro++
(extracted from its online documentation). The yellow
spheres are shown in order to help the visualization
of the 3D lattice only and are not used as particles
here. Particles are created by the erosion algorithm
described in the text, considering the “Voronoi-cells”
defined by the blue edges.

since it is based on the Voronoi tessellation (Voronoi
1907) and requires an algorithm for the erosion of the
initial assembly of particles. The erosion is required
mainly because the particles need to be converted into
sphero-polyhedra, i.e. have all edges smoothed, and
no overlapping should be present at the beginning of
the simulations, otherwise the system would not be at
equilibrium.

A three-dimensional grid is first generated with the
dimensions of the cubic sample, then random points
are sampled in the interior of each grid cell. The num-
ber and position of the points will control the final par-
ticle size and distribution. With these points, another
library, named Voro++ (Rycroft 2009), is called in or-
der to generate the Voronoi tessellation. One example
of the output of Voro++ is shown in Fig. 2, extracted
from its user manual (Rycroft 2009).

The Voronoi tessellation partitions the domain into
cells as illustrated in Fig. 2. In this figure, the yel-
low spheres are shown to help the visualisation of
the 3D volume only; they are not used as DEM parti-
cles in this research. Afterwards, with the 3D Voronoi
tessellation (the blue edges in Fig. 2 defining the
Voronoi-cells), particles are created by eroding the
cells by an amount equal to the sphero-radii of the
sphero-polyhedra. Basically, the faces and edges of a
Voronoi-cell are displaced to the interior of the cell
and all intersections are computed. A control for the

displacements must be applied, because if the dis-
placements are too large, the solution may not exist
and the cell may become degenerated. Therefore, the
sphero-radii of the particles must be limited and their
values are generally found by trial-and-error.

With this technique, the packing is ready for the
true triaxial simulation, since the algorithm guaran-
tees that no overlaps exist, i.e. the particles are al-
ready in perfect contact one with each other but not
overlapping. Clearly, this technique can only create
dense packings. Another method to generate the pack-
ing would be to run a preliminary DEM simulation
with the application of gravity, in order to move the
grains until a stable condition is found. Nonetheless,
this method would create a geo-static situation where
contact forces do exist; this is not the isotropic sit-
uation desired for the investigation in this research,
especially at the first stage of the true triaxial testing
– zero gravity situation.

By controlling the position and number of points
randomly distributed inside the grid, the size and
shape of the Voronoi particles can be indirectly con-
trolled. However, in all analyses presented in this pa-
per, the number was chosen in such a way that the as-
sembly is reasonably isotropic with particles not too
elongated or with small angles. This can be done by
distributing equal, but random, spaced points. In ad-
dition, because of this construction, the size of the
particles is approximately uniform. Further details are
found in (Galindo-Torres et al. 2009; Galindo-Torres
and Pedroso 2010).

Fig. 3 illustrates a cubic packing of 1000 sphero-
polyhedra created by the Voronoi-erosion technique
and which is adopted as the experimental specimen
for the numerical simulations of true triaxial tests.

3 TRUE TRIAXIAL TEST

The shear properties of granular assemblies can be
obtained with samples subjected to either compres-
sion or extension stress paths. These tests allow for
the investigation of the relationship between devia-
toric stresses and mean stresses at failure, and hence
the macroscopic friction properties. Shearing tests
with stress paths in which the mean stress is kept con-
stant allow for the investigation of the pattern of the
ultimate stress points on the octahedral plane. There-
fore, the shape of the failure envelope on this plane
can be investigated as well. The true triaxial is a con-
venient apparatus to obtain these information.

The true triaxial apparatus is composed by a system
of six rigid plates forming a parallelepiped. Because
the DEM code employed in this work can handle
complex (quasi-general) shaped particles, the loading
plates of the apparatus can also be defined as DEM
particles. This is very convenient since no change
to the code is necessary in order to implement the



Figure 3: Cubic packing with 1000 quasi-general
(sphero-polyhedra) particles used in the true triaxial
tests, generated by means of the Voronoi-erosion tech-
nique.

contact between the loading plates and the granular
material representing the sample. The friction coeffi-
cient between the plates and the particles can easily
be controlled – here, the friction coefficient is set to
zero simulating lubricated walls. In addition, the in-
teraction between the plates one with respect to each
other is switched off; therefore, the plates can easily
cross each other in order to confine the particles (see
Fig. 4). Clearly, problems such as the interaction be-
tween plates do not exist in the virtual apparatus.

Forces are applied to the plates of the virtual ap-
paratus according to a pre-defined stress path. To cal-
culate the stresses, the cross-sectional areas for each
direction are updated as the plates move. Stresses
are defined as negative during compression (Classical
Mechanics’ convention). Principal strain components
are calculated by the change on the distance between
opposite plates divided by their initial distance. The
following Continuum Mechanics’ quantities are cal-
culated:

pcam = −
σ1 + σ2 + σ3

3
(1)

qcam =

√

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2
√
2

(2)

εv = ε1 + ε2 + ε3 (3)

εd =

√
2

3

√

(ε1 − ε2)2 + (ε2 − ε3)2 + (ε3 − ε1)2 (4)

Therein, σi are the principal stress components and εi
are the principal strain components, pcam is the nega-
tive of the Cambridge mean stress invariant (Schofield

Figure 4: Cubic ensemble of spheres representing a
sample for the true triaxial test. There are 1000 parti-
cles randomly generated. The same packing is used
for simulations with and without rolling resistance.
The loading plates of the apparatus can freely cross
each other. There is no friction between the plates and
the particles.

and Wroth 1968), qcam is the Cambridge deviatoric
stress invariant, εv is the volumetric strain, and εd is
the deviatoric strain.

To verify the strength properties of cubic assem-
blies of granular media subject to the combination of
three stress components, the stress paths illustrated in
Fig. 5 can be applied. These allow the construction of
the failure envelopes in the Haigh-Westergaard space.
Each path is described as follows:

• (1) Initial confinement of the specimen by means
of isotropic stresses;

• (2a) Conventional (cylindrical) compression
tests with constant lateral stresses and increasing
vertical stress;

• (2b) Conventional (cylindrical) extension tests
with constant vertical stress and increasing lat-
eral stresses;

• (3) p-constant tests with a combination of
stresses such that a pre-defined constant Lode
angle (θ) can be reproduced on the octahedral
plane (see Fig. 6). These paths vary from exten-
sion (θ = −30◦) to compression (θ = +30◦).

The Lode angle is illustrated in Fig. 6 and is defined
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Figure 5: Applied stress paths.

Figure 6: Octahedral plane and definition of Lode an-
gle θ.

according to the following expression:

θ =
1

3
asin

(

−27s1s2s3
2q3cam

)

(5)

where si are the principal deviatoric stress compo-
nents, calculated by means of: si = σi + pcam.

4 FAILURE CRITERIA

Stress-based failure criteria can be defined by observ-
ing either the peak or the residual stresses attained in
mechanical tests, such as triaxial tests. For instance,
the ultimate stresses measured in triaxial tests with
increasing deviatoric stresses can be used for this def-
inition. Results from triaxial tests can be used to de-
fine failure criteria regarding either the macroscopic
friction angle at compression (θ = +30◦) or the fric-
tion angle at extension (θ = −30◦). Only one these
two angles is necessary for a mathematical model. In
this paper, the results of friction angles at compression
φcomp are thus considered. After obtaining this single
material parameter, the following criteria are fitted to
the simulated data: Mohr-Coulomb, Matsuoka-Nakai,
and Lade-Duncan (Lade and Duncan 1973).

The Mohr-Coulomb failure criterion predicts a lin-
ear relationship between qcam and pcam for the stress
states at failure and can be mathematically expressed
according to (disregarding cohesion):

σ∗

1
− σ∗

3

σ∗

1
+ σ∗

3

= sinφcomp (6)

Therein, σ∗

i are the sorted (increasing) principal stress
values. With this expression, the strength at extension
will be smaller than for compression. Therefore, the
shape of the Mohr-Coulomb failure envelope is of
a deformed hexagon when viewed in the octahedral
plane.

The Matsuoka-Nakai (Matsuoka and Nakai 1974)
failure criterion predicts the same strength as the
Mohr-Coulomb failure criterion for both compression
and extension. For plane strain or when the Lode an-
gle is in the range −30◦ < θ < +30◦, the Matsuoka-
Nakai failure criterion predicts higher strength than
the Mohr-Coulomb criterion. The Matsuoka-Nakai
failure criterion is directly defined based on the three
characteristic invariants Ii of the stress tensor accord-
ing to

I1I2
I3

= 9+ 8tan2 φcomp (7)

Another failure criterion similar to the Matsuoka-
Nakai failure criterion is the Lade-Duncan (Lade and
Duncan 1973). This criterion predicts higher strength
at extension than that predicted by the Matsuoka-
Nakai or Mohr-Coulomb failure criteria. The Lade-
Duncan criterion is given by

I3
1

I3
=

(3− sinφcomp)
3

(1 + sinφcomp)(1− sinφcomp)2
(8)

5 RESULTS

To observe the strength properties of cubic assemblies
of granular media with the DEM, virtual true triax-
ial tests are carried out. The applied stress path is the
one numbered (3) in Fig. 5, which is enforced after
an initial isotropic compression is applied (path (1) in
Fig. 5).

When using spherical particles, in order to account
for the effect of eventual non-spherical shapes that
are typically observed in natural grains, for instance
in soils, the rolling resistance technique can be em-
ployed as a convenient alternative (Iwashita and Oda
1998). However, some artificial parameters have to be
introduced. For the sake of comparison, simulations
with spheres and rolling resistance are carried out and
the scheme presented in (Luding 2008) for modelling
the rolling resistance is adopted in this study.

Simulations of true triaxial tests are carried out with
assemblies of spheres (Fig. 4) and sphero polyhedra
(Fig. 3). The packings are randomly generated as de-
scribed earlier in this paper. With spheres, simulations
are carried out with and without rolling resistance.
Each simulation is repeated with a different number
of particles in order to also investigate the influence
of the number of particles. The microscopic constants
adopted in all analyses are organized in Table 1. In the
following, pcte means constant pcam.

5.1 Linear model

Tests with spheres, spheres with rolling resistance,
and sphero-polyhedra are carried out in order to verify
whether the macroscopic strength of a cubic packing
of grains can be represented by a linear model or not.



Table 1: Microscopic constants for the DEM analyses.

Constant Description

Kn = 10000.0 Contact normal stiffness
Kt = 5000.0 Contact tangential stiffness
µ = 0.4 Microscopic friction coefficient
gn = 8.0 Normal viscous coefficient
gt = 0.0 Tangential viscous coefficient
β = 0.12 Rolling resistance stiffness coeffi-

cient (only for spheres with rolling

resistance)

η = 1.0 Plastic moment coefficient (only for

spheres with rolling resistance)

0 10 20 30 40 50
pcam [kPa]

0

5

10

15

20

25

q c
am

[k
Pa

]

DEM data
fit: �=12.9

Figure 7: Tests with 1000 spheres under compression
(path (3) with constant pcam).

The linear model here applies to the relationship be-
tween deviatoric and mean stresses. The compression
(θ =+30◦) path with p-constant is employed for such
task.

Results with 1000 spheres and 10000 spheres are
given in Fig. 7 and Fig. 8, respectively. It is observed
that the results with 1000 spheres are more scattered
(noisy) than those obtained with 10000 spheres. For
the latter, the boundary conditions have less influence
and the representative volume (RVE) is better defined
because of the higher number of particles.

To illustrate the difference on material response due
to the number of particles, the stress-strain curves for
each one of the packings with 1000 spheres and 10000
spheres are given in Fig. 9 and Fig. 10, respectively,
where it can be seen that the increase on the number of
particles makes the simulation more stable with qual-
itatively better representation when compared with
real materials; Toyoura sand for instance.

The stability situation and the quality of represen-
tation are improved by adding rolling resistance to

0 10 20 30 40 50
pcam [kPa]

0

5

10

15

20

25

q c
am

[k
Pa

]

DEM data
fit: �=12.0

Figure 8: Tests with 10000 spheres under compres-
sion (path (3) with constant pcam).
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Figure 9: Stress-strain behaviour of a sample with
1000 spheres (pcte = 20kPa).
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Figure 10: Stress-strain behaviour of a sample with
10000 spheres (pcte = 20kPa).

the assembly of spheres. This makes sense as long
as the DEM has to reproduce Nature materials such
as sands. The linear fitting in this case is illustrated
in Fig. 11 and Fig. 12 for 1000 spheres and 10000
spheres, respectively. The results with 1000 particles
are again more scattered than with 10000 particles.

Even though the results in Fig. 12 weakly suggest
a nonlinear fitting, a linear model is adopted, since
the selected points representing the peak stresses are
not necessarily the most robust indication of failure
stresses. It is important to note that these may vary
somewhat from simulation to simulation and depend
on the boundary conditions, REV size, and stress
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Figure 11: Tests with 1000 spheres with rolling re-
sistance under compression (path (3) with constant
pcam).
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Figure 12: Tests with 10000 spheres with rolling re-
sistance under compression (path (3) with constant
pcam).

path. Therefore, it is reasonable to adopt a linear fit-
ting.

To illustrate the difficulty on selecting the points
representing the failure states, stress-strain curves are
plotted as in Figs. 13 and 14 (see also Figs. 9 and 10)
for assemblies with 1000 particles and 10000 parti-
cles (spheres with rolling resistance), respectively. In
these figures, the selected points are indicated by up-
ward triangles (the same is done for all other stress-
strain curves). With 10000 particles, there is less noise
and the predicted curves are more similar to the ones
obtained with real sand, as shown in a next section,
i.e. the 10000 particles cube is a better REV.

Simulations of true triaxial tests are also car-
ried out with assemblies of complex shaped parti-
cles (sphero-polyhedra). Different number of parti-
cles, from 1000 to 10000 are considered. It is ob-
served that the stress-strain response does not change
radically for these numbers of particles (see Fig. 15).
This is due to the already high number of contacts in
a sphero-polyhedra packing, therefore, well reproduc-
ing a dense granular packing. In Fig. 15, the macro-
scopic strength properties (ultimate stresses ratio) of
the packing with complex particles are similar for
each number of particles. For instance, the ultimate
stress ratio at failure is about qcam/pcam = 1.2. Be-
cause of this similarity, only the tests with 1000 parti-
cles are further discussed in the following text.

The deviatoric-mean stresses relationship for the
specimen of 1000 sphero-polyhedra (assembly illus-
trated in Fig. 3) is given in Fig. 16, for compres-
sion stress paths with constant mean pressure. It is
observed that the data can be very well fitted by a
straight line (linear model), contrary to the simulation
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Figure 13: Stress-strain behaviour of a sample with
1000 spheres with rolling resistance (pcte = 20kPa).
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Figure 14: Stress-strain behaviour of a sample with
10000 spheres with rolling resistance (pcte = 20kPa).
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Figure 15: Stress-strain behaviour of samples of com-
plex (sphero-polyhedra) particles (pcte = 5kPa).

with spheres with rolling resistance or not.

The stress-strain curves obtained with the 1000
sphero-polyhedra packing are also more smooth than
that obtained with 1000 spheres with rolling resis-
tance or not. This is mainly due to the higher number
of contacts (vertices, edges, faces) and the interlock-
ing provided by the complex shapes. The curves ob-
tained with 1000 sphero-polyhedra can hence be com-
pared with those obtained with 10000 spheres. Later,
it is shown that the sphero-polyhedra packing qualita-
tively represents very well the Toyoura sand.

The stress-strain behaviour in this case is illustrated
in Fig. 17 for a constant mean pressure of 20kPa.
The reason for a less chaotic behaviour of the sphero-
polyhedra is related to the dissipation of the kinetic
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Figure 16: Tests with 1000 sphero-polyhedra particles
under compression (path (3) with constant pcam).
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Figure 17: Stress-strain behaviour of a sample with
1000 sphero-polyhedra (pcte = 20kPa).

energy. The noise observed with spheres is indeed
of chaotic nature and its effect is mitigated by con-
straining particles movement (as with rolling resis-
tance). When spheres are free to roll, the kinetic en-
ergy of the system is not as quickly dissipated as in
the other constrained cases, hence producing a noisy
response. On the other hand, the angularity of the
sphero-polyhedra, and eventual multi-contact (non-
convex particles), will produce a strong constraint for
the particles movement in addition to a larger number
of collisions for the same number of particles. This
higher frequency of inelastic collisions will then re-
duce the kinetic energy and the noise.

5.2 Octahedral plane

The data obtained with DEM simulations of true tri-
axial tests are now plotted in the Haigh-Westergaard
3D space of principal stresses. In particular, a view
along the hydrostatic axis is considered, with focus on
the so-called octahedral plane. This allows the inves-
tigation of an appropriated macroscopic failure enve-
lope for isotropic materials. Although the failure en-
velope is a 3D surface in the Haigh-Westergaard stress
space, only its cross-section on the octahedral plane is
drawn, for a fixed pcam value.

For the mathematical definition of a particular
failure criteria with linear deviatoric-mean stress
relationship (e.g. Mohr-Coulomb, Matsuoka-Nakai,
Lade-Duncan), a constant macroscopic friction angle
must be defined beforehand. Either the angle at com-
pression or extension can be employed for such task.
Here φcomp at compression is considered.

For spheres, as shown in Figs. 7, 8, 11, and 12, a
constant friction angle may not fit all sets of data for
all range of mean stresses. For the case of pcam =
20kPa, the fitting seems to be fairly accurate. This
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Figure 18: Octahedral view of data obtained with
1000 spheres (pcte = 20kPa).

case is then selected to illustrate the DEM results on
the octahedral plane, including the shape of some fail-
ure criteria. These results are given in Figs. 18, 19, 20,
21.

For the packing with 1000 sphero-polyhedra, the
constant friction angle fits quite well all data obtained
with different values of pcam. The results for pcam =
20kPa are given in Fig. 22.

For spheres, spheres with rolling resistance, and
sphero-polyhedra, it is observed that most data lie in
between the Mohr-Coulomb criterion (lower bound)
and the Lade-Duncan criterion (upper bound), with
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Figure 19: Octahedral view of data obtained with
10000 spheres (pcte = 20kPa).
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Figure 20: Octahedral view of data obtained with
1000 spheres with rolling resistance (pcte = 20kPa).
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Figure 21: Octahedral view of data obtained with
10000 spheres with rolling resistance (pcte = 20kPa).
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Figure 22: Octahedral view of data obtained with
1000 sphero-polyhedra (pcte = 20kPa).

the Matsuoka-Nakai criterion being a good average.
Regarding the sphero-polyhedra, it is interesting to
note that the (isotropic) geometry of the (complex)
particles does not affect much the shape of the fail-
ure envelope, apart from increasing the macroscopic
friction angle, when compared with spheres.

5.3 Qualitative observation

To asses the capabilities of the DEM on representing
assemblies of complex shaped grains, real experimen-
tal data from true triaxial tests on the Toyoura sand
of Japan (Nakai 1989), illustrated in Fig. 23(a,c,e),
are qualitatively compared with the numerical results
obtained with 1000 sphero-polyhedra, as given in
Fig. 23(b,d,f). It can be observed that both the stress-
strain behaviour (Fig. 23(a,b)) and dilatancy curves
(Figs. 23(c,d)) of experimental data and simulations
are quite similar, indicating that the 1000 particles
packing of sphero-polyhedra is a reasonable repre-
sentation of this particular sand, regarding the macro-
scopic mechanical behaviour.

It can also be observed that the influence of the
Lode angle is similar when comparing experiments
with simulations. In particular, it can be seen that the
strength at extension is smaller than at compression
(Figs. 23(e,f)). This also illustrates the great impor-
tance of considering the stress path on the strength
characteristics of granular materials. Finally, for both
sets of data and predictions, ideal failure envelopes
have similar shapes.



0 1 2 3 4 5 6

εd  [%]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

q c
am
/p

ca
m

θ=+30 ∘

θ=+20 ∘

θ=+10 ∘

θ=0 ∘

θ=−10 ∘

(a) Toyoura sand

0 2 4 6 8 10 12

εd  [%]

0.0

0.5

1.0

1.5

2.0

q c
am
/p

ca
m

θ=+30 ∘

θ=+20 ∘

θ=+10 ∘

θ=0 ∘

θ=−10 ∘

θ=−20 ∘

θ=−30 ∘

(b) Sphero-polyhedra

0 1 2 3 4 5 6

εd  [%]

−0.5

0.0

0.5

1.0

1.5

2.0

ε v
 [

%
]

(c) Toyoura sand

0 2 4 6 8 10 12

εd  [%]

0

2

4

6

8

10

ε v
 [
%
]

(d) Sphero-polyhedra

−σ1 ,θ=+30 ∘

−σ3 −σ2

θ=0 ∘

θ=−30 ∘

ϕcomp=40 ∘

Mohr/Coulomb

Matsuoka/Nakai

Lade/Duncan

(e) Toyoura sand

−σ1 ,θ=+30 ∘

−σ3 −σ2

θ=0 ∘

θ=−30 ∘

ϕcomp=44.4 ∘

Mohr/Coulomb

Matsuoka/Nakai

Lade/Duncan

(f) Sphero-polyhedra

Figure 23: Comparison of experimental data on Toyoura sand (left, pcte = 196kPa, data after Nakai, 1989) with
DEM results with 1000 sphero-polyhedra (right, pcte = 50kPa).



6 CONCLUSIONS

A DEM code that considers grains of non-spherical
(quasi-general) shapes is employed for simulations of
cubic packings representing true triaxial tests. Atten-
tion is given to the strength properties of assemblies
of granular media. The pattern of the failure data both
on the octahedral and on the deviatoric-mean pressure
planes are observed.

The generation of dense packings of complex par-
ticles is carried out employing a three-dimensional
Voronoi tessellation, after which an erosion algorithm
is applied in order to build sphero-polyhedral parti-
cles, i.e. smooth particles with rounded edges.

Non-physical corrections, such as the virtual
rolling resistance technique, necessary for the simu-
lations of Nature grains, such as sands or gravels, are
completely avoided by the method employed in this
research thanks to the consideration of particles of
quasi-general (complex) shapes.

It is verified that the DEM simulations with sphero-
polyhedra are more stable than with spheres, either
with or without rolling resistance. This is mainly due
to the interlocking of the grains that may cause more
dissipation of energy, and, therefore, more damping,
in addition to provide a higher frequency for con-
tacts. Because the number of contacts in assemblies
of sphero-polyhedra may be higher than in assem-
blies of spheres, the number of particles in packings
of sphero-polyhedra may be smaller than in packings
of spheres.

The instabilities of DEM simulations with spheres
are a reported problem in the DEM literature re-
lated to simulations of natural grains and one of the
solutions is precisely the adoption of rolling resis-
tance. However, the rolling resistance introduces vir-
tual (non-physical) parameters. The instabilities are
mainly due to the rolling of grains that do not de-
pend on the friction angle. Controlling the rolling pre-
vents this chaotic behaviour. The non-spherical shape
of sphero-polyhedra is a much more natural solution,
allowing a sound physical representation of natural
materials.

It is also verified that, for all particles studied here,
spherical or sphero-polyhedral, the relationship be-
tween deviatoric and mean stresses at failure (for peak
stresses) is best fitted with a straight line. This im-
plies that the best phenomenological model for this
material is a linear model with constant macroscopic
friction coefficient. In addition, it is verified that the
stress values at failure, when plotted on the octahe-
dral plane, usually lie between the Mohr-Coulomb
and the Lade-Duncan envelopes with the Matsuoka-
Nakai model being a good average.

The numerical results qualitatively agree with a set
of experimental data on Toyoura sand. Therefore, the
DEM, especially with particles more similar to real

Nature grains (non-spherical), can describe quite well
the macroscopic properties of granular assemblies, in-
cluding higher strength at compression than at exten-
sion and an intermediate strength from compression
to extension.
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