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Higher-order lattice Boltzmann (LB) pseudopotential models have great potential for solving complex fluid
dynamics in various areas of modern science. The discreteness of the lattice discretization makes these models
an attractive choice due to their flexibility, capacity to capture hydrodynamic details and inherent adaptability
to parallel computations. Despite those advantages, the discreteness makes high-order LB models difficult to
apply due to the larger lattice structure, for which basic fundamental properties, namely, diffusion coefficient and
contact angle, remain unknown. This work addresses this by providing general continuum solutions for those
two basic properties and demonstrating these solutions to compare favorably against known theory. Various
high-order LB models are shown to reproduce the sinusoidal decay of a binary miscible mixture accurately and
consistently. Furthermore, these models are shown to reproduce neutral, hydrophobic and hydrophilic contact
angles. Discrete differences are shown to exist, which are captured at the discrete level and confirmed through
droplet shape analysis. This work provides practical tools that allow for high-order LB pseudopotential models to
be used to simulate multicomponent flows.

Introduction—The lattice Boltzmann (LB) method provides
a mesoscopic representation of fluid transport and has over
the past two decades gained substantial interest in modeling
complex fluid dynamics [1, 2]. Much of the success of the LB
method owes to the unique lattice discretization that allows
for exact advection [3], i.e., zero-numerical-diffusion, and scal-
able parallel computations due to the locality of computing
non-linear equations on the discrete lattice allowing for highly
efficient computations [4]. As the advection is exact and non-
linearity is local, the LB method is an attractive alternative
to numerical methods based on the Navier-Stokes equations
(NSE) [5, 6]. However, the standard (low-order) lattice model,
e.g., the 2D nine velocity model (Q9), is insufficient to recover
the correct momentum dynamics at the NSE level [7] and vio-
late Galilean invariance, i.e., the velocity-dependent viscosity
due to cubic velocity error O(u3) [8]. Higher-order LB mod-
els are shown to completely recover the full NSE [9] and to
describe hydrodynamics beyond the NSE representation [7].
This level of detail is important for fluid problems approach-
ing nonequilibrium where nonlinearity and fluctuations due
to microscopic interactions become significant [10]. Develop-
ments of high-order LB models have increasing importance as
applications involving complex microscopic fluids phenomena
continue to advance due to their well established potential and
significance, such as microfluidics [11]. Many of these micro-
applications involve complex states of fluids, i.e., fluid systems
consisting of multiple components and/or phases (hereinafter
referred to as multicomponent). For this reason, the develop-
ment of high-order LB models for multicomponent problems
is crucial for the advancement of micro-applications. Other
than the greater level of hydrodynamic detail, there are two ad-
ditional advantages of using these models for multicomponent
problems; (1) have an inherently high-isotropy-order lattice
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structure and (2) are Galilean invariant. Both of these are well
known to be crucial for eliminating the spuriousness that has
long plagued the LB method for multicomponent flows [12].
Surprisingly, to this date, the application of higher-order LB
models for multicomponent flows remains elusive and mostly
unexplored.
The LB method simulates multicomponent flows using ex-

tensions based on either the free energy [13], color-gradient
model [14] or pseudopotential interactions [15]. The pseudopo-
tential model is arguably the most popular multicomponent
model [3, 6] and has consistently been used to model complex
systems (see, e.g., review by Chen et al. [16]) including droplet
dynamics on chemically patterned surfaces [17]. The pseu-
dopotential model, although known for its simplicity, provides
a unique mesoscopic representation of the underlying micro-
scopic picture, in which non-ideal fluid mixtures are simulated
by mimicking the intermolecular interactions along the lattice.
It depicts intra (self) and inter (cross)-interactions discretely on
the lattice by a pseudopotential ψ (a function of local density
ρ) and an amplitude G, where the spatial discretization and
accuracy, i.e., order of isotropy gradients, is dependent on the
lattice structure used. While various high-isotropy-order lat-
tices are available from Sbragaglia et al. [18] it is possible, and
more convenient, to use the lattice structure of a high-order LB
model directly. Different lattice structures/models incur differ-
ent discrete contributions that affect the momentum flux tensor
(in short, pressure tensor) [19–21]. This was first shown by
Shan [22], who proposed the exact lattice theory and provided
the exact discrete pressure tensor for the eighth-isotropy-order
lattice structure, known as the E8. The pressure tensor of self-
and cross-interactions directly influence transport properties
where a direct link to the macroscopic continuum fluid equa-
tions (i.e., NSE), such as advection-diffusion, can be derived
using the Chapman-Enskog analysis as shown in [23] and more
recently in [24]. To derive such transport properties requires a
differential form rather than a discrete form, that is, the contin-
uum approximation (a truncation) of the discrete pressure ten-
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sor. Shan [22], using Taylor expansion series, discovered that
this continuum solution is dictated by the exact discrete form,
which allows for thermodynamically consistent pseudopoten-
tial models [19, 21]. The Q9 with interactions on the E8 lattice,
provided the discrete and continuum solutions by [22], has
since been successfully applied to study complex fluids and
assist in contributions to fundamental fluid mechanics body of
knowledge. Notably, this includes the rheology of soft flowing
crystals [25, 26] and evidence of stress-induced cavitation [27],
which were only possible due to the extended interaction-range
of the E8 over two Brillouin zones (or lattice-belts). In spite
of this, the application of high-order LB models (or any other
high-isotropy-order lattice structure) for any multicomponent
problem has remained unexplored due to the unknown form of
the exact interaction pressure tensor at both the discrete and con-
tinuum level. This was addressed in our recent work From et al.
[21] where solutions at both levels were derived and provided
in a general form for higher-order lattice structures. That in-
cludes lattice structures that involve more discrete interactions
across three or more Brillouin zones (e.g., tenth-order (E10),
12th-order (E12) isotropy [18] and Q49ZOTT [21] lattice struc-
tures), allowing for even greater flexibility compared to the
E8. As such, while high-order LB pseudopotential models al-
ready benefit from high-isotropy-order there is also a myriad
of potential benefits offered from using such models. However,
the basic properties, namely, diffusion coefficient and contact
angle, required for the general application of these models for
multicomponent flows remain unknown.
In this work, the high-order LB pseudopotential method

detailed in From et al. [21] is used, for which a summary is
provided in Appendix A. To address the general applicability
of high-order LB pseudopotential models for multicomponent
flows, the advection-diffusion equation is obtained in Sec. I
to identify the diffusion coefficient, D. In Sec. II the discrete
solution from [21] is extended to consider fluid-structure-
interactions (FSI) and the contact angle θ is derived. Both
D and θ are obtained in a general differential form that is
applicable to any lattice and includes contributions from both
self- and cross-interactions (ψ and Ψ). The universality and
applicability of the derived solutions are demonstrated by
benchmarking three high-order LB models, the zero-one-three
(ZOT) variants Q17ZOT [28] and Q25ZOT [9], and the
zero-one-two-three (ZOTT) Q49ZOTT [9, 21]. In Sec. I the
sinusoidal decay of binary miscible mixture is simulated and
in Sec. II, a static droplet on a solid surface is simulated to
demonstrate neutral, hydrophobic and hydrophilic contact
angles.

I. DIFFUSION

From a numerical point of view, diffusion transport is re-
quired to define whether two distinct fluids (denoted by su-
perscript φ and ϕ) are miscible or immiscible. First, for a
fluid mixture with S-number of components (ρ =

∑S
φ ρ

φ) the

continuity of the whole fluid mixture requires
∂tρ+ ∇ · (ρu) = 0, (1a)

∂tρui + ∂jρuiuj = −∂iPo + ∂j [µ (∂jui + ∂iuj)] , (1b)
where subscript indices denote Cartesian components (i :=
x, y), u is the common mixture velocity [see Eq. (A4)] and
Po =

∑S
φ Pφo is the total local static isotropic pressure. Each

φ-component obeys the advection-diffusion equation,
∂tρ

φ + ∂iρ
φui = −∂iDφϕ∂iρφ, (2)

where mutual diffusion between components requires the sym-
metry condition ∂iρφ = −∂iρϕ to satisfy (1a). Equation (2)
depends on the implementation of force contributions to the
collision process where, in this work, force contributions are
coupled explicitly using the explicit-forcing (EF) scheme [29].
This was solved recently in Küllmer et al. [24] but only for
the case where relaxations times τφ = τϕ, self-interactions
are absent, and for a standard lattice, i.e., using a continuum
approximation of pressure tensor that is not general for higher-
order LB models. Through Chapman-Enskog analysis using a
second-order Taylor expansion [23], the EF scheme recovers
the advection-diffusion [24] in the general form
∂tρ

φ + ∂iρ
φui =

− ∂i

{(
τ̄ − 1

2

)[
cφ∂iPo + (cφ + cϕ)(−c2s∂iρφ + Fφi )

]}
.

(3)
where cs is the sound speed of the lattice model, cφ is the
φ−component concentration where c = cφ+cϕ = 1 and the ef-
fective relaxation τ̄ = (ρφτφ + ρϕτϕ)/ρ with τφ defined from
kinematic viscosity νφ = c2s

(
τφ − 1

2

). The mass diffusive flux
of each component satisfies jφ = ρφ(uφ − u) = Dφϕ∇ρφ.

Here, the work by Küllmer et al. [24] is extended by consid-
ering τ̄ , all forms of interactions (ψ and Ψ), and implementing
the generalized solution to Po and Fi into Eq. (3). Approxi-
mating the diffusion coefficient Dφϕ requires Po ≡ Ptot and
Fφi to be in differential form rather than discrete [30]. This
is achieved under the long-wavelength limit assumption [see
21]. The discrete form of the interaction force including all
possible interactions is defined by [15] (spatial dependence is
only explicitly notated in discrete equations)

Fφi (x) = −ψφ(x)Gφφ
∑
α

w̃αψ
φ(x+ ξα)ξα,i

−Ψφ(x)Gφϕ
∑
α

w̃αΨϕ(x+ ξα)ξα,i,

(4)

where a binary mixture is considered S = φ, ϕ. Second-order
Taylor expansion around ψ(x± ξα∆t) and Ψ(x± ξα∆t) in
(4) results in the continuum approximation of interaction force

Fφi = −C2Gφφψφ∂iψφ − C2GφϕΨφ∂iΨ
ϕ, (5)

where ∆t = 1 in dimensionless lattice units and the sign
of G defines attraction (−G) or repulsion (+G). Cn refers
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to the nth-order isotropy coefficient of tensorial structures,
such as second-order∑α w̃αξα,iξα,j = C2Iij and fourth-order∑
α w̃αξα,iξα,jξα,kξα,l = C4 (Iij Ikl + IilIkj + IikIjl), where

I is the identity tensor. For a given lattice {wα, ξα : α =
0, 1, . . . ,Q}, Cn are controlled via the interaction weights (w̃α),
which are w̃α ∝ wα with (4) directly on the lattice. For the to-
tal pressure tensor, Ptot = Pkin +Pint, the kinetic contribution
is obtained as the second-order moment of the equilibrium dis-
tribution feqα [Eq. (A3)], i.e., Pkin ≈

∑S
φ

∑
α f

eq,φ
α ξα⊗ξα =

Iρc2s + ρu ⊗ u, where ⊗ indicates tensor product. The inter-
action pressure tensor (Pint) due to (4) is approximated from
the generalized discrete form [21], which up to second-order
Taylor expansion reads

Pint,φ =
C2
2

(
Gφφ

(
ψφ
)2

+ GφϕΨφΨϕ
)
. (6)

Assuming Pkin,φ ≡ Pkin,φ ≈ ρφc2s, at the interface
where both components coexist, or for a miscible mixture,
one component has a total pressure of Pφo = cφρφc2s +
C2
2

[
Gφφ

(
ψφ(cφρφ)

)2
+
∑S
ϕ6=φ GφϕΨφ(cφρφ)Ψϕ(cϕρϕ)

]
,

where the total pressure is Ptot =
∑S
φ Pφo . Furthermore, if

the two components in the mixture are completely immiscible
then Ψφ ·Ψϕ ≈ 0 and, as such, in the bulk of each component
the total pressure is

Pφo = ρφc2s +
C2
2
Gφφ

(
ψφ
)2
. (7)

Pint (6) is truncated up to second-order isotropy gradients,
which intrinsically assumes the tensor to be completely
isotropic, hence a scalar quantity. Realistically, the pressure
tensor at the interface is anisotropic, which requires at least
fourth-order isotropy gradients [18]. Equations (5) and (6) are
practical estimates and subbed into (3) to derive the diffusion
coefficient (Dφϕ). Since potentials are functions of local den-
sity it is possible to use identities ∂iψ = ∂ρψ × ∂iρ and after
factoring out ∂iρφ to conform with the advection-diffusion
equation (2) where Dφϕ is then defined by

Dφϕ =

(
τ̄ − 1

2

)
×
[
C2
(
Gφϕ

[
cφΨϕΨ′φ + cϕΨφΨ′ϕ

]
− cφGϕϕψϕψ′ϕ − cϕGφφψφψ′φ

)
− c2s(cφ + cϕ)

]
,

(8)
where ψ′ = dψ/dρ, Ψ′ = dΨ/dρ, and, symmetry requires
∂iρ

φ = −∂iρϕ and Gφϕ = Gϕφ. The miscible, Dφϕ < 0, and
immiscible, Dφϕ > 0, regimes are given by a critical limit for
the mutual interaction strength defined by solving Eq. (8) for
Dφϕ = 0,

Gφϕ
crit =

c2s(c
φ + cϕ) + C2

(
cφGϕϕψϕψ′ϕ + cϕGφφψφψ′φ

)
C2 (cφΨϕΨ′φ + cϕΨφΨ′ϕ)

.

(9)
Defining Gφϕ = C ·Gφϕ

crit allow two components to be set as
miscible or immiscible by C < 1 or C > 1, respectively. By
imposing certain conditions it is possible to reduce and simplify
the generalized solution (9). Firstly, setting the second-order

(a)

(b)

FIG. 1: Sinusoidal decay of a miscible binary mixture where the theo-
retical solution [Eq. (B1)] (solid line) is compared against the Q17ZOT
(•), Q25ZOT (×) and Q49ZOTT (�). (a) only cross-interactions
to complement known solution (10) and (b) all interactions are in-
cluded to complement derived full solution (8) and (9). All lat-
tice models were run near the critical limit Gφϕ/Gφϕ

crit = 0.9 for
τ̄ = {1.2, 1.0, 0.8 , 0.6} (in order of appearance from left to right).

isotropy coefficient to C2 = c2s (possible by setting interaction
weights w̃α to be equal to the lattice weights wα) allows the
critical limit Gφϕ

crit (9), for a given problem, to be the same
regardless of the lattice model. However, Dφϕ still depends on
cs as seen in (8). In addition, if the concentration of each com-
ponent at the interface is cφ = cϕ = 1/2 and self-interactions
are neglected then (9) further reduces to

Gφϕ
crit = 2

(
ΨϕΨ′φ + ΨφΨ′ϕ

)−1
, (10)

which is the same form given in [24]. Notice that, unlike tra-
ditional force-schemes [23], with the EF scheme Gφϕ

crit (9) isindependent of τ̄ , as reported in [24] for (10).
To demonstrate the universality and applicability of derived

solution for Dφϕ (8) the accuracy across various high-order
lattices is tested numerically using the popular decaying si-
nusoidal wave of a miscible (Dφϕ < 0) binary mixture (de-
tails of the known theoretical solution and initialization are
provided in Appendix B 1). Simulations are conducted on
a grid(nx = 200, ny = 4), with an initial perturbation of
δ = 10−3 and run until the local φ−density ρφL = ρφ( 1

2nx, t)

satisfies ρφL−〈ρ〉 = 10−6 [Fig. 1]. Three high-order LBmodels
are benchmarked, Q17ZOT, Q25ZOT, and Q49ZOTT, where
interactions (4) are deployed directly on their respective lat-
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tice structure and the interaction weights w̃α are scaled so that
C2 = 1 and C4 = c2s by setting w̃α = wα/c

2
s. The sound speed

cs of the Q49ZOTT model has been rescaled to match that of
the ZOT lattices [see 21] to avoid ambiguity in dimensionless
scaling. These three lattice models differ in terms of

• contributions at the discrete level, that is, interaction
forces (4) are computed on different lattice links with
different magnitudes.

• Q17ZOT and Q25ZOT have the same order of isotropy
(spatial accuracy) whereas Q49ZOTT is two orders more
accurate allowing for discrete contributions to be as-
sessed and the uniqueness of isotropy-order to be tested.

• Q17ZOT and Q25ZOT recover up to third-order terms
in the equilibrium distribution, compared to Q49ZOTT
which can recover up to fourth-order terms [see
Eq. (A3)].

The general fourth-order-isotropy pseudopotential that satisfies
thermodynamic consistency [19] is used for both self- and
cross-interactions (for demonstrative purposes), i.e., ψφ =[
ρφ/

(
ε+ ρφ

)]1/ε and Ψφ =
[
ρφ/

(
ε+ ρφ

)]1/ε, respectively,
where ε = (6C4 − 2C2)/(6C4 + C2) [21].

In Figure 1a, only cross-interactions are considered to com-
plement the known solution (10). In Figure 1b, all forms
of interactions are included where self-interactions (Gφφ and
Gϕϕ) were chosen so that the bulk pressure of each com-
ponent is Pφo /(c2sρφ) = 0.9 using Eq. (7). In all simula-
tions cross-interaction strength is set close to the critical limit
Gφϕ/Gφϕ

crit = 0.9 where Dφϕ is arbitrarily close to zero. The
results between the three lattice models and theoretical solution

are indistinguishable, which validates the derived general so-
lution for the diffusion coefficient (9). The accuracy is further
appreciated by the consistency between lattice models, all of
which involve different discrete force contributions, across the
extremely long advection times (>> 105 numerical steps in
time were required to meet the criteria ρφL−〈ρ〉 ≤ 10−6). This
demonstrates the universality of the solution and the robust
application of higher-order LB pseudopotential models.

II. CONTACT ANGLE

Hydrophilic, hydrophobic, or, neutral surfaces, quantified
by the contact angle, are important for a wide range of appli-
cations, from porous media to modern surface technology in
self-cleaning surfaces. These surfaces are the result of the inter-
actions of different fluid components with the solid boundary
(xw), i.e., FSI, which is modeled directly with the pseudopo-
tential model [31] by readapting Eq. (4)

Fw,φ
i (x) = −ψφ(x)Gwφ

∑
α

w̃αψ
w,φ(x+ ξα)ξα,i, (11)

where ψw,φ is the potential-density of the solid boundary at xw

and unless (x+ ξα) ∈ xw this potential is set to zero. ψw,φ is
set to equal the initial density of each respective component. It
is assumed that FSI scale linearly with density gradients, which
can be imposed by Gwφψφ(x) := Gwφρφ(x), ∀x. Within the
vicinity of the solid boundary (x+ξα) ∈ xw the total pressure
tensor has to account for these interactions [i.e., FSI (11)] and
is now defined by Ptot = Pkin + Pint + Pw. A discrete form
of pressure tensor Pw due to FSI (11) has not been previously
defined in the literature. With the discrete form of Pint ad-
dressed in [21] it is straightforward to recast this discrete form
to account for FSI (11),

Pw,φ
ij (x) =

∑
z

Pw,φ(z)
ij (x) =

{∑
α

w̃α
2Ez

[
Gwφψφ(x) · ψw,φ(x+ ξα)ξα,iξα,j

]

+
∑
α

εz̄β=Nz̄∑
β

w̃α
2E z̄

[
Gwφψφ(x+ εz̄β) · ψw,φ(x− ξz̄α + εz̄β)ξz̄α,iξ

z̄
α,j

]

+
∑
α

εẑβ=Nẑ∑
β

Cβ
w̃α
2E ẑ

[
Gwφψφ(x+ εẑβ) · ψw,φ(x− ξẑα + εẑβ)ξẑα,iξ

ẑ
α,j

]}
,

(12)

where superscript z, z̄ and ẑ denote symmetry groups uniquely
defined by z = |ξ1|2, |ξ2|2 . . . |ξα|2 where the two unique sym-
metry groups z̄, ẑ ∈ z > 2, i.e., lattice ξα that span beyond the
first Brillouin zone. More specifically, z̄−group considers all
vectors (ξzα ∀z = z̄) that are purely axial, ξα,i · ξα,j = 0, i 6= j,
or purely diagonal, |ξα,i| = |ξα,j |. Symmetry group ẑ consid-
ers all vectors (ξzα ∀z = ẑ) that consists of diagonal vectors
with mixed components, ξα,i 6= ξα,j and ξα,i, ξα,j 6= 0. The

second and third line in (12) allows for all z̄ and ẑ contributions
to be accounted for, where technical details of the parameters;
scalars E and Cβ , and, vectors εβ and N, were introduced in
From et al. [21] and the following will provide a brief summary.
Ez is the largest absolute value of the components in the lattice
velocity, defined by: Ez = maxα(|ξzα|), ∀α ∈ ξzα. In symme-
try groups z̄ and ẑ there exist β = 1, . . . , (Ez − 1) additional
contributions that are not captured by x + ξα [i.e., the first
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line in (12)]. These additional contributions are accounted for
at the discrete level by x− ξzα + εzβ with the introduction of
the vector εzβ : β = 1, . . . , (Ez − 1). Initially, this is set to
the directional unit vector (εβ=1 = Uα), which is given by
Uα(ξα) = 1◦sgn(ξα) where 1 is a constant unit vector, sgn(·)
denotes signum function and ◦ denotes Hadamard product.
Then, εβ>1 progressively shifts (εβ = εβ−1 + Uα) towards
Nz until εzβ=end = Nz , where the vectorN(ξα) = (E −1)Uα

provided that εβ−1,i 6= ξα,i for any ith component; otherwise
εβ,i = εβ−1,i. Lastly, Cβ is required only for ẑ = 13 and any
other symmetry group ẑ < 13 this factor is set to unit constant.
For ẑ = 13, during the sum over β this factor is initially set
to Cβ=1 = 3/2 and then Cβ=(3−1) = 1/2. For full details
refer to [21]. The interaction pressure tensor due to FSI (11) is
now defined in a generalized discrete form (12) and comes in
addition to the discrete solutions presented in [21].

At the three-phase-interface (two fluid components, or
phases, and the solid phase) the contact angle can be deter-

mined from Young’s equation [32],

cos θ =
σwϕ − σwφ

σφϕ
, (13)

for which the droplet is phase−φ rich and the surrounding fluid
is phase−ϕ rich. In (13) σwφ (and σwϕ) is the tension between
the solid boundary and each fluid component due to FSI (11)
and σφϕ is the interfacial tension between binary fluids. These
are defined by [33] (in the case where the surface boundary is
normal to principle y-axis)

σφϕ =

∫
φϕ

(
Ptot
yy − Ptot

xx

)
dy,

and σwφ =

∫
wφ

(
Ptot,φ
yy − Ptot,φ

xx

)
dy,

(14)

which can be evaluated given (12) and the solutions in [21]
allowing the contact angle (13) to be solved at the discrete level.
Furthermore, it was shown in [21], withPint truncated at fourth-
order isotropy gradients, that at the continuum level σφϕ will
only depend on C4, despite an arbitrary number of interactions
(4) at the discrete level. The continuum approximation of σwφ

can be obtained similarly to σφϕ following From et al. [21],
where in this case all gradients are directed in y, i.e.,

σwφ ≈ −C4
2
Gφφ

∫
wφ

(
∂yψ

φ
)2
dy − C4

2
Gwφ

∫
wφ

∂yψ
w,φ∂yψ

φdy − C4
2
Gφϕ

∫
wφ

∂yΨφ∂yΨϕdy (15)

With the continuum form of σφϕ and σwφ it is possible to define (13) at the continuum level explicitly by (see, e.g., Benzi et al.
[33])

cos θ ≈

C4
2


(
Gϕϕ

∫
wϕ

|∂yψϕ|2 dy + Gwϕ

∫
wϕ

|∂yψw,ϕ∂yψ
ϕ| dy

)

−

(
Gφφ

∫
wφ

∣∣∂yψφ∣∣2 dy + Gwφ

∫
wφ

∣∣∂yψw,φ∂yψ
φ
∣∣ dy)


C4

[
1

2
Gϕϕ

∫
ϕϕ

(∂yψ
ϕ)

2
dy +

1

2
Gφφ

∫
φφ

(
∂yψ

φ
)2
dy + Gφϕ

∫
φϕ

∂yΨφ∂yΨϕdy

] , (16)

which is a fourth-order-isotropy truncation inherited from (15). Note that the cross-interactions terms in σwφ and σwϕ cancel out.
In the absence of self-interactions, and factoring out dependence on C4, Eq. (16) reduces to

cos θ ≈
Gwϕ

∫
wϕ

|∂yψw,ϕ∂yψ
ϕ| dy − Gwφ

∫
wφ

∣∣∂yψw,φ∂yψ
φ
∣∣ dy

2Gφϕ
∫
φϕ

∂yΨφ∂yΨϕdy

, (17)

which is the same simplified form as in Benzi et al. [33]. From this, it is straightforward to identify that if Gwϕ = Gwφ and
∂yψ

w,ϕ∂yψ
ϕ = ∂yψ

w,φ∂yψ
φ, then, theoretically, the contact angle θ = arccos(0) = 90° for any Gφϕ in the absence of

self-interactions.

The contact angle is tested by simulating a static droplet
on a flat surface (details in Appendix B 2) where similarly

to the sinusoidal decay in Sec. I, the Q17ZOT, Q25ZOT and
Q49ZOTT are used with isotropy coefficients set to C2 = 1 and
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C4 = c2s. The potentials used are ψφ =
[
ρφ/

(
ε+ ρφ

)]1/ε and
Ψφ = ρφ. It is reminded that Gwφψφ(x) := Gwφρφ(x), ∀x
in Eqs. (11) and (12). Given ψ, Ψ and the isotropy coefficients
(controlled via w̃α) it is possible to solve forDφϕ = 0 to obtain
Gφϕ
crit [Eq. (9)] and set Gφϕ = C ·Gφϕ

crit with C > 1 to simulate
an immiscible binary mixture. For validation, a qualitative
comparison is insufficient as the actual contact angle may be
visually deceiving. In this work, validation is achieved by
comparing the contact angle at the discrete level (θN ) directly
against two additional approaches based on the droplet shape
analysis, denoted by θgeo and θFIT. The various solutions to the
contact angle are:

• θN — calculated using the discrete solution (12) directly
to evaluate surface tensions (14) and then Young’s equa-
tion (13).

• θgeo — the contact angle has a known approx-
imation assuming a spherical cap shape [34],
θgeo = arctan [2(H −R0)/L] + π/2 with
R0 = (L2 + 4H2)/(8H), where L and H are the
droplet length on the boundary and height, respectively.

• θFIT — obtained from direct double-elliptic fitting of the
droplet shape using an open-source code from Andersen
and Taboryski [35], which was modified to allow for the
density field from the numerical data to be used directly
(by converting ρφ(x) into an unsigned 8-bit integer).

All these solutions require the exact three-phase-interface point-
of-contact located at the first fluid-node where cφ = cϕ = 1/2,
shown as a green-circle marker in Fig. 2.
The known theoretical solution of the contact angle

θ = 90° (17), i.e., neutral contact angle, is tested by setting
self-interactions to zero and boundary-interactions to be
equal Gwφ = Gwϕ. Figure 2a shows that θN (12) and (14)
is in exact agreement with the theoretical requirement
θ = 90°, whereas θFIT deviates slightly (±3°∼ 4°) and θgeo
shows the largest deviation (> 7°). The deviations for the
geometric-based solutions, θFIT and θgeo, are most likely owed
to their dependence on spatial resolution [34]. Furthermore, in
Figs. 2b and 2c boundary-interactions are set to equal-opposite
Gwφ = −Gwϕ, which allows for hydrophobic θ > 90° [2b] or
hydrophilic θ < 90° [2c] fluid-solid dynamics to be modeled
by setting +Gwφ or −Gwφ, respectively. Both θFIT and θN
are in excellent agreement with each other and qualitatively
match the contour plot. In contrast, θgeo fails to adequately
match the simulated results at a qualitative level. However,
θgeo does allow for hydrophobic [2b] and hydrophilic [2c]
contact angles to be identified. Interestingly, for each test case
θgeo remains constant across all lattice models, whereas both
θFIT and θN indicate minuscule differences between lattice
models for the hydrophobic [2b] and hydrophilic [2c] cases.
These are due to differences at the discrete lattice level and as
such, it is reasonable to expect θN to identify such differences.
It is, however, more important and interesting to note that

differences are also identified by the double-elliptic fitting
(θFIT), which suggests that the θN results are not the product
of ‘random’ numerical-noise. Instead, θFIT complements
the discrete θN solution by identifying that, other than the
droplet length and height (evident by the constant θgeo), the
quasi-equilibrium droplet-shapes themselves differ between
lattice models. Such discrete differences are considered as an
attribute of isotropy-order of different lattice structures. For
this reason, it is surprising that the Q17ZOT and Q25ZOT
differ at this quasi-equilibrium state, since both, although
different at the discrete level, theoretically have the same order
of accuracy for both isotropy-gradients and the equilibrium
distribution [see Eq. (A3)]. Nevertheless, the results presented
in Fig. 2 collectively validate the generalized continuum
approximation for the contact angle (16) and the newly
proposed discrete solution (12) for the interaction pressure
tensor due to FSI (11).

III. SUMMARY AND CONCLUSIONS

To further broaden the applicability of higher-order LB pseu-
dopotential models, generalized solutions of the diffusion coeffi-
cient and contact angle were addressed. A generalized diffusion
equation was derived and validated by comparison against the
theoretical solution for a sinusoidal decay of a binary miscible
mixture. To demonstrate the universality and applicability of
the derived solution, all simulations were carried out with the
Q17ZOT, Q25ZOT, and Q49ZOTT. To address the contact
angle, first, the generalized discrete pressure tensor from [21]
was extended to consider FSI. Then, the generalized continuum
form of the interface tension was defined and with Young’s
equation, a continuum approximation of the contact angle was
derived. By simulating a static droplet on a flat surface nu-
merical validation was achieved for neutral, hydrophobic and
hydrophilic surfaces. The exact discrete form was shown to
identify differences between the three high-order lattices, which
were found to exist even between Q17ZOT and Q25ZOT de-
spite conforming to the same order of isotropy gradients. The
exact implications of these discrete differences, in terms of
accuracy and stability, are yet to be investigated in detail. The
ability to obtain this exact knowledge at the discrete level will,
therefore, play an essential role in future developments. In
particular, the impact of accuracy and stability of different
high-order LB models for multicomponent flows are of great
interest.
Addressing the diffusion coefficient and contact angle is a

significant advancement in the field of higher-order LB pseu-
dopotential models by allowing such models to be readily and
more conveniently applied for general multicomponent prob-
lems. The exact discrete solution and the practical, continuum
approximation are now both available. The latter allows for
these models to be readily and more conveniently applied while
the former provides the exact information of discrete contribu-
tions, which is important for future developments.
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(a)

(b)

(c)

FIG. 2: Static droplet on a flat surface simulated with Q17ZOT (left), Q25ZOT (middle) and Q49ZOTT (right), including all interactions. (a)
neutral case where boundary-interactions are equal (Gwφ = Gwϕ) and the contact angle theoretically reduces to θ = 90°. (b) hydrophobic
and (c) hydrophilic cases where boundary-interactions are set to equal-opposite (Gwφ = −Gwϕ). The green marker pinpoints the exact

three-phase-interface point-of-contact. All plots are cropped at x = [ 1
2
nx : 7

8
nx] and y = [1 : 3

8
ny].
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Appendix A: High-order LB pseudopotential method

In this work, a high-order LB pseudopotential method from
our previous work From et al. [21] is used. The following pro-
vides a summary. In the LBmethod, mesoscopic representation
of fluid flow is described by the distribution function (f ) where
each component (φ) is defined by its own lattice distribution,
fφα , in configuration space x, in each discrete velocity (ξα) ofall directions ξα : α = 0, ...,Q at time t. The evolution of f is
defined as
fφα (x+ ξα, t+ ∆t) = fφα (x, t)

− 1

τφ

[
fφα (x, t) +

∆t

2
Sφα(x, t)− feq,φα (x, t)

]
+ ∆tSφα(x, t),

(A1)
where relaxation parameter τφ based on the kinematic viscos-
ity ν of the fluid, i.e., νφ = c2s(τ

φ − 1/2)∆x2

∆t , where on a
discrete lattice ∆x = ∆t = 1 and cs is the sound speed of the
lattice model. In Eq. (A1) the forcing equilibrium distribution
(the source term) Sφα(x, t) is explicitly coupled to the collision
process, which is known as the explicit-forcing (EF) scheme
[29, 36]. This source term is defined by [36],

Sφα =
F φ(ξα − u)

ρφc2s
feq,φα . (A2)

The discrete equilibrium distribution function up to fourth-order
Hermite polynomial expansion is given by (see the seminal
work by Shan et al. [7]),

feqα = wαρ

{
1 +

ξα · u
c2s︸ ︷︷ ︸

1st order

+
1

2

[
(ξα · u)2

c4s
− u2

c2s

]
︸ ︷︷ ︸

2nd order

+
1

6

[
(ξα · u)3

c6s
− 3u2(ξα · u)

c4s

]
︸ ︷︷ ︸

3rd order

+
1

24

[
(ξα · u)4

c8s
− 6u2(ξα · u)2

c6s
+

3u4

c4s

]
︸ ︷︷ ︸

4th order

}
,

(A3)
where wα are the lattice weights and sound speed cs is specific
to the lattice model,∑α wαξα,iξα,j = c2sIij . It is reminded
that themth-order terms recovered in (A3) is dependent on the
lattice model. More specifically, for the high-order LB models
used in this work, the Q17ZOT [28] and Q25ZOT [9] recover
up to third-order terms in (A3), compared to the Q49ZOTT
[9, 21] which can recover up to fourth-order terms in (A3).
In Eqs. (A2) and (A3), the term u refers to the common

mixture velocity and for the EF scheme to conserve momentum

is defined by [29]

u =

∑S
φ ρ

φuφωφ∑S
φ ρ

φωφ
, (A4)

where ωφ = 1/τφ. The macroscopic variables are defined by
moments of the equilibrium distribution, i.e., the zeroth and
first-order moments are defined respectively by

ρφ =
∑
α

fφα , (A5a)

ρφuφ =
∑
α

fφαξα +
∆t

2
F φ, (A5b)

Appendix B: Numerical benchmarks and initial conditions

Here details of the numerical benchmarks conducted in
this work are provided including the initial conditions and the
known theoretical solution to the sinusoidal decay.

1. Sinusoidal Decay

In Section I of the main text the sinusoidal decay of a binary
mixture was used as benchmark, which has the theoretical
solution [24]

ρφ(x, t) = 〈ρ〉+ 〈ρ〉δ sin(λx) exp
(
−λ2Dφϕt

)
,

ρϕ(x, t) = 〈ρ〉 − 〈ρ〉δ sin(λx) exp
(
−λ2Dϕφt

)
,

(B1)

where the wave number is given by λ = 2π/nx, ρ(x) =
ρφ(x) + ρϕ(x) and 〈·〉 denotes spatial average over the entire
spacex at time t. Equation (B1) is also used directly to initialize
(t = 0) density fields ρφ(x) and ρϕ(x), i.e., in (B1) with t = 0
the term exp

(
−λ2Dϕφt

)
= 1. A small initial density perturba-

tion is introduced with δ and for the tests here is set to δ = 10−3.
Simulations are conducted on a grid(nx = 200, ny = 4) where
at x = 1

4nx the φ−density ρφL = ρφ( 1
4nx, t) with δ = 10−3

initially (t = 0) results in ρφL − 〈ρ〉 = 10−3 for which simula-
tions are run until ρφL − 〈ρ〉 = 10−6 is satisfied.

2. Droplet on a Surface

In Section II of the main text a static droplet on a solid
surface is simulated, where the droplet (the φ-component) in
space x = (nx, ny) are initialized by

ρφ (x) =
ρφo
2

{
(cH+cL)−(cH+cL) tanh

(
2(R∗ −Ro)

Wo

)}
,

(B2)
and the surrounding fluid (ϕ) by

ρϕ (x) =
ρϕo
2

{
(cL+cH)−(cL+cH) tanh

(
2(R∗ −Ro)

Wo

)}
.

(B3)

https://doi.org/10.1103/PhysRevE.76.066701
https://doi.org/10.1088/1361-6501/aa5dcf
https://doi.org/10.1088/1361-6501/aa5dcf
https://doi.org/10.1103/PhysRevE.57.R13
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where Ro is the initial radius and R∗ =√
(x− xo)2 + (y − yo)2 with the location of the droplet

defined by coordinates xo and yo. Simulations are conducted
on a symmetric grid(nx = ny = 200). The top and bottom
boundaries are treated as solid nodes with no slip, for which
the standard bounce-back [6] boundary condition is applied.
Due to streaming, to ensure correct recovery (bounced-back)

distributions on high-order LB models the wall-boundaries are
covered by maxα(|ξα|)-number of layers on the top and bot-
tom. For the lattice models used in this work maxα(|ξα|) = 3.
The droplet is initialized using Eqs. (B2) and (B3) by setting
xo = nx/2 and yo = Ro + Eα + 2 with an initial radius of
Ro = nx/4 and the additional 2 nodes are used to place the
droplet just above the bottom wall.
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