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Caveats on the Implementation of the Generalized Material Point M ethod

0. Buzzi!, D. M. Pedroso? and A. Giacomini?

Abstract: The material point method (MPM) is a nuforces and displacements. However, as the material de-
merical method for the solution of problems in contirferms, a rational approach for the internal response must
uum mechanics, including situations of large deformalso be considered. The continuum mechanics is such
tions. A generalization (GMPM) of this method waa theory that provides the framework for the representa-
introduced by Bardenhagen and Kober (2004) in ordén of the internal response by defining the stress and
to avoid some computational instabilities inherent to tls&rain concepts (Eringen, 1967; Malvern, 1969). Three
original method (MPM). This generalization leads to quirements for the definition of a problem within the
method more akin of the Petrov-Galerkin procedure. Alentinuum mechanics are the balance of momentum, the
though it is possible to find in the literature exampldgnematics of deformation, and the constitutive relations
of the deduction and applications of the MPM/GMPMhese lead to a boundary value problem which, depend-
to specific problems, its detailed implementation is yielg on the complexity of the geometry and materials un-
to be presented. Therefore, this paper attempts to der analysis, can not be solved analytically.

scribe all steps required for the explicit implementatiofhe material point method (MPM) (Sulsky, Chen, and
of the material point method, including its generalizaSChreyer, 1994; Sulsky, Zhou, and Schreyer, 1995;
tion. Moreover, some caveats during the implementatignmsky and Schreyer, 1996; Sulsky, Schreyer, Peter-
are addressed. For example, the setting up of boundg#y; Kwok, and Coon, 2007) is one numerical solution
conditions and the steps for the computation of valugfethod to the continuum boundary value problem with
at nodes and material points are discussed. The infirange of features, for instance: a) can cope with finite
ences of the time and space discretization are also \formation problems; b) avoidance of mesh tangling;
ified, basing on numerical analyses. Two strategies {rapility to advect material properties without numer-
the update of stress, known as update stress first (URh) diffusion or artificial mixing; d) automatic no-slip
and update stress last (USL) are numerically investigatggntact characteristics; and e) easy definition of the ge-
It is shown that both the order for the computation @fmetry. Several applications of this method to the sim-
boundary conditions and the way that the grid values ji@tion of a range of problems, including stress propa-
extrapolated have high impact on the accuracy of the g@tion, dynamic fracture, multiscale simulations, mesh
lution. The complete 3D algorithm is detailed and SUfefinement, among others, can be found on the litera-
marized in order to make easier the implementation pfe (Bardenhagen, Guilkey, Roessig, Brackbill, Witzel,
the GMPM/MPM. and Foster, 2001; Shen and Chen, 2005; Guo and Nairn,

2006; Ma, Lu, Wang, Roy, Hornung, Wissink, and Ko-

keyword: ~ Material point method, MPM, gem:"r"’llizeqnanduri 2005; Ma, Liu, Lu, and Komanduri, 2006; Ma
material point method, GMPM, boundary conditions, up;, Wan’g Ho’rnun’g V’\/iss,ink and Koman’duri 21006"
date stress first, update stress last. Ma; Lu an’d Komand’uri 2006), ' ’

' Nonetheless, the computer implementation of the ma-
1 Introduction terial point method requires carefully designed steps in
A goal of solid mechanics is the understanding of the moer_der to guarantee that first the method W(_)r_ks properly
. . ar}d second a good accuracy and some efficiency can be
chanical behaviour of structures by means of the study of . . . i )
achieved during simulations. Three main aspects must be
L Centre for Geotechnical and Materials Modelling, The Ursitg C_0nS|dered: a) the eStE_lb“Shment of the poundary ‘?Ond"
of Newcastle, Newcastle NSW 2308 Australia. tions; b) the extrapolation and interpolation of particles

2Golder Geomechanics Centre, School of Engineering, The Uguantities to grid nodes and vice-versa; and c) the order
versity of Queensland, Brisbane QLD 4072 Australia.
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for the update of stress: before or after the solution fiandering a second and a third order tensor, respectively.
the discrete balance of momentum. The first one is digodes quantities are denoted by using “n” in the sub-

cussed here, while the second one is studied in detailsspypts and material points, or particles, by using “p” in

Bardenhagen and Kober (2004). The last one is discusggdsubscripts. The term “particles” and “material points”

in Bardenhagen (2002). are used interchangeably, even though the term “parti-
Due to computational instabilities, a generalizatiorles” may lead to a discrete interpretation, which is not
known as the generalized interpolation material poitfite case here.

method, here referred to as GMPM, was developed By the graphics, the following convention is selected:

Bardenhagen and Kober (2004) using a sort of Petrgie material points are represented by black dots and the
Galerkin procedure and, thus, resulting in a method meygges by void dots.

akin of meshless method such as the meshless local
Petrov-Galerkin (MLPG) method (Atluri and Zhu, 1998) . . .
Like in the MPM, the GMPM relies on an underlying3 Generalized Material Point Method

grid at least for the solution of the discrete governinghe material point method (MPM) solves the variational
equations. Therefore, since the grid can be interpretgéin of the conservation of momentum by means of the
as an updated Lagrangian frame, the method is a aigtretization of the continuum media into particles or
mix of (arbitrary) Eulerian and Lagrangian approach@saterial points (Sulsky, Chen, and Schreyer, 1994; Sul-
(Sulsky, Chen, and Schreyer, 1994; Sulsky, Zhou, agl;, zhou, and Schreyer, 1995). By leaving the masses
Schreyer, 1995; Sulsky and Schreyer, 1996; Wieckowslf,these particles unchanged, the conservation of mass
Youn, and Yeon, 1999). is implicitly satisfied. The conservation of energy is not
This paper discusses some potential pitfalls that maynsidered in this method. In addition to the discretiza-
arise during the explicit implementations of the (gendren via particles, an underlying grid is used to compute
alized) material point method. In addition, the two prdhe solution for the conservation of momentum and up-
cedures for updating the stress: a) at advance (USF), adl&fe the particles state. Therefore two sets of interpola-
lastly (USL) are studied in terms of numerical accura¢ypn/extrapolation functions of positiox)(are required:

and efficiency. a) the particle characteristic functiogg(x); and b) the
grid shape function$,(X).
2 Notation In the original MPM (Sulsky, Chen, and Schreyer, 1994;

Isky, Zhou, and Schreyer, 1995), the particle charac-

Tensor notation is employed here. The order of eve$ L .
PS’[IC functions are of the form:

entity is indicated by adding the correspondent numberI
primes 7" to their symbol. For example, vectors, which B
are entities of first order, are indicated by: Xp(X) = 8(X—Xp)Vp ()

v=vie®e; (Orthonormal Cartesian System OCS) (i which & corresponds to the Dirac delta functiog, is

_ _ . the particle position, and, is the particle volume.
in whichv; are the Cartesian components of the vector jn

) generalized form of the material point method
a system of reference with the orthonormal bases vect SMPM) was introduced by Bardenhagen and Kober
€. The dyadic product between two vectors is defined % y g

004) where any particle characteristic functions can be

T=uev=uviexe (OCS) (2) adopted. Depending on the selection for these functions,
the method provides an additional degree of smoothness

in which T is a second order tensor. The derivatives gf the solution. On the other hand, the original MPM may

vectors and tensors are given by suffer of numerical noise, mainly when material points

av oy cross some cells in the computational grid (Bardenhagen
|

-t - e 3

ax a9 (3) and Kober, 2004).

This paper discusses the GMPM, whereas the MPM can
be directly recovered by selecting Eq. 5 as particle char-
acteristic functionXp).

dg aO'ij
dx ~ ox NI (4)
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As presented by Bardenhagen and Kober (2004), the internal forces are:
derivation of the GMPM starts with the variational form
of the conservation of momentum: = ZVDGD'G ; (15)

/w-tdA+/pw-de /_ odV = /pw-adv and the rate of momenta evaluated at grid nodes are:
d VAl / B
(6) =2 S (16)
P

in which w, t, b, anda are vectors representing the

weighting functions, tractions, body forces, and accéft EAns- 14- 165 andG , are weighting and gradient-
erations, respectively, ariis the stress tensop is a weighting functions, respectlvely, and are given by (see
scalar indicating the den5|ty field. details in Bardenhagen and Kober, 2004):

The density, stress, and acceleration continuum fields

re 1
0= [, S0xp000v (17)

discretized into material points by means of the partic
characteristic functions according to:

(x) = Z mep(),() . ,an( ) = Vp V*Gn( )Xp( )av (18)
’ T Vb whereV* =V NV, denotes the current support of the par-
ticle characteristic functions. Note that both functions
g , zopo (8) depend implicitly on the grid nodes positioxsand par-
ticle positionxp.
ApXp(X)
p()a) = % ' Vi () 4 Aspectsof implementation

Wheremp are the part|c|e masses md']dmates the rate In this paper, the eXleClt solution in time is COﬂSldered
of momentum. where the time step is given IAt.

The weighting functions and their derivatives with relN"e€ phases are necessary for the explicit implemen-

spect to position are discretized according to a compation of the GMPM (or MPM): @) initialization of the
tational grid by means of: underlying grid; b) solution of the discrete balance of

momentum at grid nodes; and c) update of the material
= 231()/()% (10) points state. However, two intermediary steps must also

be considered: i) stress update of the material points; and

ii) setting up of boundary conditions. The order of these

dw . :
Z n @ Gn (X (11) two steps in the algorithm affects the accuracy and ef-
dx n ficiency of the method. The first step (i) can be imple-
in which: mented before or after the computation of the internal
forces, and, thus, before or after the discrete solution of
Gn(X) = dSh(x) (12) the balance of momentum. Bardenhagen (2002) explains
dx the difference in the solution using these two approaches

for step (i), where the methods known as update stresses
By substituting Eqns. 7-12 into Eq. 6, the discrete gofrst (USF) and update stresses last (USL) are analysed
erning equations are obtained: using an energy point of view. In this paper, attention
e g s is focused on the numerical characteristics of both algo-
/fn B Fn =0On (13) rithms. The second step (ii) can be done by zeroing some
terms on the computation grid, for the case of essential
boundary conditions givea priori. Nonetheless, this
(14) last step (ii) must be called in the right position inside
the explicit loop.

where the external forces are:

fn= /AS’EdAJF % MpbSp,
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Figure 1 : Entities computed at grid noder)(and re-
quired at material pointspj.

Not every mechanical entity is required at the material
points and grid nodes at the same time. Actually, the
mass (np), velocity (p), strain €p), stress @p), and 5
body massesbf) are recorded at material points. The
mass (), momentumdy), internal force {!), external
force (f5), and rate of rﬁomentai],() are corﬁputed at grid
nodes'(see Fig. 1). Clearly, the position of node$ énd
material points Xp) must be known or computed every
time. The velocity of nodesyf) is only necessary tem-
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10. Update patrticle velocities from the rate of momen-

P tum at nodes
11. Update particle positions from the updated grid mo-
mentum
i

updated
B

porarily, during the stress update, as discussed later, and
hence does not have to be stored in the computer mem-
ory.

The algorithm that considers the first approach (USF) for

rp
. o : dated
the update of stresses is illustrated in Fig. 2 and is ex- 1
plained as follows. For each time step, clear the grid wpdaicd
values (see Fig. 1), calculate the weighting and gradient-

weighting functions, and then:

1. Compute node mass from particle masses . : ;
, grid nodes 1) and material pointsp).
2. Compute node momentum from particle masses and

Figure2: Update stress first (USF): entities computed at

velocities
3. Compute node velocity from grid mass and momeki-this algorithm (USF - Fig. 2), the steps (1), (2), and (3)
tum correspond to the phase a) initialization of the underlying
4. Compute particle strains from grid velocity grid, the steps (4) and_(5) correspond to the intermediary
. . . step (i) update of particle stresses, the steps (6), (7) and
5. Update particle stress from particle strains . .
, _ (8) correspond to the phase b) solution of the discrete
6. Compute internal forces from particle stresses  ,omentum balance, and the steps (9), (10), and (11) cor-
7. Compute external forces from particle body massespond to the phase c) update of particles states.
8. Compute the rate of momentum for grid nodes  The algorithm which considers the second approach
9. Update grid momentum from the rate of momentufSL) for the update of stresses is illustrated in Fig. 3,

at nodes where the steps are: for each time step, clear the grid
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values, calculate the weighting and gradient-weighting
functions, and then:

1. Compute grid mass from particle masses

2. Compute grid momentum from particle masses and
velocities

3. Compute internal forces from particle stresses

4. Compute external forces from particle body masses

5. Compute the rate of momentum for grid nodes

6. Update grid momentum from the rate of momentum
at nodes

7. Update particle velocities from the rate of momen-
tum at nodes

8. Update particle positions from the updated grid mo-
mentum ,ll)gpdated

9. Compute grid velocity from grid mass and momen- wpdated .
tum " g wupdated
10. Compute particle strains from grid velocity P

11. Update particle stress from particle strains

- Q.

Ne}

In the USL algorithm (Fig. 3), the steps (1) and (2) cor-
respond to the first phase, the steps (3), (4), and (5) cor-
respond to the second phase, and the steps (6), (7), (8) 11
correspond to the third phase. In this approach (USL), ggpdated
the steps (9), (10), and (11) are the ones for the interme-

diary step (i). _ N
A complete study between the two approaches, USF aﬁ%gure?’  Update stress_ last (.USL)' entities computed at
rid nodes 1) and material pointsy).

USL, is given by Bardenhagen (2002). Here, the focds
is on the detailed implementation of the algorithm, con-

sidering the computation of the interpolation functions . . :
. i . also facilitate a parallel implementation of the method,
setting up of boundary conditions, and numerical accu

racy. Only the explicit version of the MPM is considereglcmSIqerlng that each po_mt needs to add only to the sur-
rounding nodes of the grid. Therefore, for example, each

here, while details about the implicit implementation can . . .
. . .processor will have to record only those grid nodes in the

be found elsewhere, for example in Guilkey and Wei3s . . .

(2003) omain where the tracked particles would contribute to.

updated
b

In higher dimensions, 2D and 3D, it is common to adopt
4.1 Structured grid grid shape functions defined as product of two nodal tent
functions (see e.g Bardenhagen and Kober, 2004; Dapha-

Since the grid can have any shape, a structured grid tkar, Lu, Coker, and Komanduri, 2007), according

be adopted, resulting in great convenience, for exampie,
when tracking the location of material points. This track-
ing must be done for each time step, before computifigX) = SH(X) - S(Y) - S(2) (19)

the weighting and weighting-gradient coefficients.  The same can be adopted for the particle characteristics
During the initialization phase, the values at the nodkgsctions:

can be accumulated from the values at the points; how- X y .

ever it is more convenient to loop over all material poin%%o()/() =Xp(¥) Xp(¥) *Xp(2) (20)

and add the contributions from each point to the sibue to the definition of “weighting” and “gradient-
rounding nodes. This approach of implementation camighting” functions (Eq. 17 and Eg. 18) in the GMPM,
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the grid support of these functions will range more points Yy

than in the MPM. Actually, in the 2D MPM, each par- Ny =6030.031..032..633..o34. .o3b
ticle contributes to 4 nodes, while in the 2D GMPM, S U S S
each patrticle contributes to at most 16 nodes. For three- QA”QZ")”QZO”QZ“' ' 'QM”@Z'()

dimensional problems, in the MPM, each particle con-  MPM: n

2

ol8 19 520 21 622 23

tributes to 8 nodes, while in the GMPM, each particle : 3 3 .P3 3 ‘
contributes to 64 nodes. This can be observed, for in- GMPM: ny ol2.. oT3nel 1. 615, 516, 017
stance, in Fig. 4 where all nodes 7-10, 13-16, 19-22, and R
25-28 will receive contributions from particle “p” in the Ol o8 ) ol0 Q“
2D GMPM, while only nodes 14,15,20, and 21 will get 3 s e o
L 0.0l 6203 o4 o0 &
any contribution in the 2D MPM. N, =6

With a structured grid, it is possible to define a reference

node (see Fig. 4) and to loop over all the contributing  Figure 4 : Structured grid and reference nodes.
nodes. For the MPM, the number of this node can be

computed using the following expression:

Xp — Xrin float points for the weighting values andx3®4 for the
No :trunc<T> weighting-gradients, which may lead to a memory de-
' manding implementation.
+trunc<w> Nx In the algorithm presented here, the implementation with
y pre-allocated arrays for the weighting and weighting-
+trunc<%> NNy (21) gradients is adopted. These arrays are:

where Xmin, Ymin and zyin are the minimum grid nodesSpr = Sp(%:Xp) (23)
coordinatesx,, yp andz, are the coordinates of the maand

terial point. Thetrunc function returns the entire value _

of a number. The terms with, (number of nodes alongGpr = G,/ (%n, Xp) (24)
the x direction) andNy, (number of nodes along thedi-

rection) can be dropped in case of 1D or 2D simulations, . | boint h iUt Now for th
respectively. For the GMPM, the reference node isin offifial point have some contribution fr < or the

N
cell further from the cell where the material point undé\pPNcll’ fand 1h§' r=4 Dlg for the G';APM) andn can be
consideration is located (see Fig. 4), since the supporif%"l'n rom this range by means of Eq. 21 or Eg. 22.

the interpolation function is bigger. In this case, the rezi-2 First phase: points to grid
erence node can be found using the following expression: '
The two principal entities required at grid nodes are the

rs(gherer corresponds to the range of nodes that each ma-

e = trunc(xp ;))((mm> 1 mass (n,) and the momgntunt/]ﬁ). During the initializa- .
tion step, an extrapolation of these values from the parti-
N [trunc(yp - Ymin> B 1} N, cles to the grid nodes must be carried out. One approach
A is to use the weighting functions according to:

+ [trunc(%) _ 1} NNy 22) m = % Sy (25)

In the USF approach, for each time-step, the weightiagd

values are used 3 times and the weighting-gradient val- _

ues are used 2 times. Therefore, if memory is not a lifir = > ShoMp¥p (26)
itation, these values can be computed once at the begin-

ning of the time-step at stored in two arrays. For thidote that the momentum on the particles is not required
3D situation using the GMPM, each point will need 6dxplicitly in this implementation, since the momentum
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on the nodes is computed directly from the mass and {&ee, for example, Sloan, 1987; Sloan and Booker, 1992;

locity on the particles (material points). This point wilSloan, Abbo, and Sheng, 2001; Pedroso, Sheng, and

be discussed in section 5.4. Sloan, 2008) resulting in a convenient algorithm due to

Additionally, in this step, the essential boundary condi€ automatic substepping technique.

tions must be considered. In this case, for each con- ) . .

strained direction, the correspondent component of t[hé]' Third phase: grid to points

momentum at nodes is cleared: As discussed in Bardenhagen and Kober (2004), since

qﬂxed_nodes: 0 (K Deonatrained) 27) the_re are not necessarily_ unigue relationships between
points and nodes, an weighted averaged approach have

in Which Dogngrained is the set of all constrained directiond0 be selected in order to extrapolate (back) the solution

(degrees of freedom - DOFs). The order that this sted@M 9rid nodes to the material points. To this end, the
implemented in the algorithm is important in terms of aROSition and velocity of the particles are also updated by

curacy. For example, if the velocities are set equal to z&g"9 the weighting functions, according to:

for the fixed nodes during the stress-update, the bound- Shpln
ary conditions will not be considered during the updakg :)/(,ﬁ-AtZ ! (30)
of nodes position. r Mh
4.3 Second phase: discrete solution Snothn
n

The solution of the discrete governing equations is quite

simple in both the explicit MPM and GMPM. This is aclt is important to note that care must be taken with grid
complished by subtracting the external forces from tR@des that have no mass (herein referred to as phantom
internal forces and updating the nodes momentum &@des), or that have a small mass as compared to a toler-
cording to Eq. 13. The caveat here is that the upd@@ceMroL, because the denominator in Egns. 30 and 31
of the nodes momentum must be done after the condRj-the conversion of node momentum to node velocity.
eration of the essential boundary conditions. These A discussed by Chen and Brannon (2002), particle in-
set simply by zeroing the components of the rate of merpenetration is precluded due to the use of nodes mo-
mentum of the fixed nodes, for each constrained directiorentum in Eq. 30.

(DOF):

frednodes_ o (e D - 4.5 Complete algorithm

% =0 {k& Doonaraines} (28) For each time-step, the grid values must be cleared, in
This phase can be viewed as an updated Lagrangian §f§€r words, the previous grid is discarded, and the in-
cedure, since the nodes are actually moving, at least tégfPolation values are computed again. Then the three

porarily and until the material points (or particles) afdases, a) points to grid, b) discrete solution, and c) grid
updated. to points are repeated for each time step. The main loop

g% (t],ﬁe explicit algorithm can be organized into 8 steps, as

If the update stress first (USF) is selected, the strains ﬁﬂSW” in details in Fig. 5-Fig. 7:

stresses in the material points must be updated at
stage, where the strain increment can be calculated froth Discard previous grid
the (grid nodes) velocity gradient by means of a volume2. Compute interpolation values

weighted average over each particle, according to: 3. Initialize grid state
1 o o 4. Update strain and stress (USF)
Nep =AY > (‘,’n ®G6 +6, ®Yn) (29) 5. compute internal and external forces
n

6. Compute rate of momentum and update nodes
The increment of stress can then be calculated by any. ypdate material points

conventional stress-update algorithm. For non-lineag Update strain and stress (USL)
constitutive laws, the explicit schemes based on the
embedded-Runge-Kutta of second order can be adoptiede that steps 4 and 8 are exclusive.
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I Initialize material points
Mp, Vp, €p, Gp, Bp, Xp
I Range of contributions (shape functions support)
if (GMPM) Reortr. = [0, 1,2, 3] else Reoner. = [0, 1]
I Run explicit update
while (t < tf)
I 1) Discard previous grid
m, = an_o f' =0, fe an_
12) Compute mterpolatlon values
for (pin 1 to Nparticles)
Compute:n}, ! Ref. nodes (Eq. 21 or Eq. 22)
r=1! Position inthe Sand G arrays
for (i, j,Kin Reontr. X Reontr. X Reontr.)
n= n’5+i + N+ KNcNy
Sor = Sup(Xn,Xp)
/Gpr = /an()/(n’)/(p)
r=r+1
end
end
I 3) Initialize grid state (mass and momentum)
for (pin 1 to Nparticles)
r=1
for (i, j, K in Reontr. X Reontr. X Reontr.)
n= n’5+i + JNx+ KNcNy
My = My + SyrMp
qn = qn + Sy MpVp
if (ni is flxed)Qn =0! Fix nodes
r=r+1
end
end
I 4) Update strain and stress
if (USF)call UpdateStrainsAndStresses
I 5) Compute internal and external forces
for (pin 1 toNpartices) r =1
for (i, j,Kin Reontr. X Reontr. X Reontr.)
n= np+| J Nk KNG Ny
f' = f'n—{—VpO'poGpr
fe = fe + MpbpSpr
if (p has tractlons)‘e = fe + JaSitdA
r=r+1
end
end

I 6) Compute rate of momentum and update nodes
for (nin 1 to Nnodes)

G = 51
if (nis fixed)dn =0 Fix nodes
= Gn + ol

end

I 7) Update material points (position and velocity)
for (p inlto Nparticl&s)
r=1
for (i, j, K in Reontr. X Reontr. X Reontr.)
n= n}k)—i-i + TNk + KNcNy
if (My > MroL)
),(p - ),(p +Atsprgn/m1
Vp=Vp +Atsprqn/mn
end /
r=r+1
end
end
I 8) Update strain and stress
if (USL) call UpdateStrainsAndStresses
I Update time
t=t+4+At
end

Figure 6 : Explicit MPM/GMPM algorithm (cont).

I Update strain and stress
for (pin 1 to Nparticles)
r=1,Ae=0
for (i, j,Kin Reontr. X Reontr. X Reontr.)
N =ng+1+ JNx+ KkNxNy
if (Mh > MroL) Vn = Qn/My elseVn = 0
A& = Ag +0.5(Vn @ Gpr + Gpr @ Vn At
r=r+1
end
Ep=€p+AE
call Updateg,, for Ag

Figure5: Explicit MPM/GMPM algorithm.

end

Figure 7 : Update strains and stresses.

5 Featuresand caveats

Toillustrate the features and to discuss further the caveat
during the implementation of the GMPM and MPM, two
simple problems in one-dimensional space are analysed.



Caveats Implementation Generalized Material Point Method 93

Only a numerical study is carried out here. These are g displacements, whefgy = o+ andw; = 2t % The
single-material-point vibration problem and the axial Vig pscript 1 refers to the first mode of vibration. In this

bration of a continuum bar, as discussed in Bardenhagﬁgbmm however, the initial conditions are also depen-

(2002) using the original MPM, but here they are algfunt of the position and have to be set according to:
analysed using the generalized material point method

(GMPM). Both of these problems have exact analyticg(lX 0) = Vosin(Bix) (36)
solutions, thus the accuracy can be easily investigated. °

Fig 8 illustrates the single-material-point vibration,ileh o, velocities and
the vibration of a continuum bar is solved using many
material points distributed in this bar. u(x,0) =0 37)

0 m, v L for displacements.

P ® -
po % 5.1 USFversusUSL

Figure 8 : Single-material-point vibration. The bar is'he two approaches, USL and USF, are evaluated for
represented by a single point initially locatedxa = the solution of the single-material-point vibration prob-
L/2, which has an initial velocityp. lem. Here, the solution is achieved using both the MPM
and the GMPM. The results are presented in Figs. 9-12.
Figs. 9 and 10 presents the results computed using the
For the single-material-point vibration problem, the bafipm. for each approaches USF and USL, respectively
has Young's modulus equal 8= 41 and length equal and Figs. 11 and 12 presents the results using the GMPM
toL = 1. The point, represented by a black dot, is origjith the USF and USL, respectively. In each figure, the
inally located atxpo = L/2 and has an original velocitynymerical and analytical values of displacement and ve-
Vo. The grid is made of two nodes locatedxat 0 and |ocity are plotted as a function of time. The strain, kine-

x = L and represented by circles. In this problem, thejgatic and total energy are also shown in order to assess
is no gravity. The solution in this case is given by: the conservation of energy.

(32) The results obtained with the MPM and USF (Fig. 9) are
reasonably accurate when comparing with the analytical
solutions. The results obtained with the MPM and USL
(Fig. 10) exhibits a higher dissipation of energy, leading

(33) to a less accurate solution both in terms of velocities and
displacement. These results are in accordance with those
presented by Bardenhagen (2002).

for the position, wherev = %\/% and the density is con-gor the GMPM, the behaviour in terms of energy dissipa-

sidered constant (equal to 1). tion is the same as for the MPM (Figs. 11 and 12). How-

For the vibration of a continuum bar, the Young's modver, the accuracy in the displacements is lower in the

ulus adopted i€ = 10, the length id. = 1 and the an- case of this single-material-point problem. In the case of

alytical solution depends now on the mode of vibratidhe Vibration of a continuum bar, as the number of ma-

(Meirovitch, 1967). Here, only the first mode £ 1) is terial points increase, the solution using the GMPM be-

V(t) = vpcos(wt)
for the velocity and

X(t) = xoexp[li/—svsin(wt)}

considered. Then, the solution is comes much better. This is illustrated in Figs. 13-14. In
Fig. 13 the USF approach is used, where no energy dis-

V(X,t) = Vo cos(wit) sin(B1x) (34) sipation can be easily observed, and in Fig. 14, this dis-
sipation can be observed in the solution using the USL

for velocities and approach, in a similar trend as with using the MPM for

Vo . . the solution of the single-material-point vibration prob-
u(x,t):Wlsm(wlt)sm(le) (35) |em.
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Figure9 : Numerical and analytical results of the singlé~igure 10 : Numerical and analytical results of the
material-point vibration problem with the USF (updatsingle-material-point vibration problem with the USL
stress first) approach. (a) Velocity and displacement(apdate stress last) approach. (a) Velocity and displace-
centre of mass. (b) Kinematic, strain and total energgent of centre of mass. (b) Kinematic, strain and total
At =0.001. MPM. energy.At = 0.001. MPM.

5.2 Influence of the time step

sults. To assess the convergence features of the MPM
As in every numerical method, spatial and time disnd GMPM as these discretizations are improved, the
cretization play a key role on the accuracy of the rproblem of single-material-point vibration is numerigall
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Figure 11 : Numerical and analytical results of thd-igure 12 : Numerical and analytical results of the
single-material-point vibration problem with the USBingle-material-point vibration problem with the USL
(update stress first) approach. (a) Velocity and displa¢apdate stress last) approach. (a) Velocity and displace-
ment of centre of mass. (b) Kinematic, strain and totalent of centre of mass. (b) Kinematic, strain and total
energy.At = 0.001. GMPM. energy.At = 0.001. GMPM.

solved where the following error measure is defined: in which v, is the analytical solution for the velocity
at the centre of mass whilg, is the numerical solution.
[ Va—va | (39) Fig. 15 shows the evolution of the computed error with
- m respect to time for two different time steps = 0.1 and
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Figure 13: Numerical and analytical results of the vibraFigure 14 : Numerical and analytical results of the vibra-
tion of a continuum bar problem (13 material points arttbn of a continuous bar problem (13 material points and
14 nodes) with USF (update stress first) approach. {@)nodes) with the USL (update stress last) approach. (a)
Velocity and displacement of centre of mass. (b) Kin®elocity and displacement of centre of mass. (b) Kine-
matic, strain and total energft = 0.001. GMPM matic, strain and total energft = 0.001. GMPM

At = 0.0001. As expected, decreasing the time step, the
accuracy improves considerably.
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Figure 15 : Evolution of the numerical error on the ve-
locity at the centre of masgersus time for the single-
material-point vibration problem.Simulations run using
the MPM, USF and two different time incremeris =
0.1 andAt = 0.0001.

Additionally, in all results presented so far, a slight ésci
lation can be noticed on the evolution of total energy. To
reduce this oscillation, the time step can be reduced. For
example, instead of usinft = 0.001 as before, the ten-
times smaller incremerdtt = 0.0001 can be considered,
resulting in a better accuracy (see Fig. 16). In Fig. 16,
different time steps are adopted, in which it is possible to
observe that the oscillations tend to vanish with smaller
time steps. Moreover, as the time step decreases, it is
possible to observe that the dissipation on the total en-
ergy computed with the USL approach also decreases.
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Figure 16 : Influence of the time step on the total energy
using the USL (update stress last) approach.

5.3 Space discretization

The convergence of the solution using the MPM is fur- o e . . . . . o o
ther investigated by means of numerical analyses. The
vibration of a continuum bar problem is solved again, 00 02 04 06 08 10
where now both the number of material points and grid ModesiPomis postion

nodes are varied. In Fig. 17, the results using the MPM € -
with the USF approach, 3 and 7 material points, and 2
grid nodes are presented. In this case it is possible to obs
serve arelatively high error in the velocity at the centre o§ T
mass of the bar. Increasing only the number of materials
points (Fig. 17(b)) does lead to improvement of accuracy. |
On the contrary, as illustrated in Fig. 18, increasing both ¢ |
the number of grid nodes (4 and 8) and material points o 2 4 6 8 10
(3 and 7), in order to obtain an homogeneous repartition
of nodes and materials points, improves significantly the
accuracy.

~ = Analytical — Numerical

5.4 Extrapolation of point momentum to grid momen-
tum

fjgure 17 : Effect of spatial discretization: numeri-
the interpolation functions and initialization the maari €@l @nd analytical velocity of the centre of mass for the

points, is to extrapolate the material data (mass and ntpration of a continuous bar problem. (a) 3 material

mentum) from the point to the grid nodes. The extrap@iNts and 2 nodes. (b) 7 material points and 2 nodes.
olation of point mass does not rise any particular isshe= 0.001. USF. MPM

whereas interpolation of the momentum can lead to less

accurate results. The correct method is to extrapolate di-

rectly the point momentum (Sulsky, Zhou, and Schreyer,

1995; Bardenhagen, 2002) using the weighting functiomgthod would be to interpolate the mass and velocity on
according to Eq. 26% =3 pSpMpVp). An alternative the nodes, separately, and then compute the momentum

The first phase of the algorithm, after the calculation
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Figure 19 : Effect of the extrapolation method: numeri-
Figure 18 : Effect of spatial discretization: numerical and analytical results of the single-material-point vi
cal and analytical velocity of the centre of mass for thgation problem point with the “correct” method. (a) Ve-
vibration of a continuous bar problem. (a) 3 materifdcity and displacement of centre of mass. (b) Kinematic,

Velocity
0.05 0.10

-0.10 -0.05 0.00

Displacement
0.000 0.005

-0.005

0.004

Energy

0.002

0.000

o
L]
o

0.0 0.2 0.4 0.6 0.8 1.0
Nodes/Points position

0.0 05 1.0 15 20
Time
T T T T T
0.0 05 1.0 15 20
Time
~ = Analytical — Numerical

0.0 05 1.0 15 20
Time
- — Kinematic— Strain ~— Total

points and 4 nodes. (b) 7 material points and 8 nodsgain and total energyit = 0.001. USF.

At =0.001. USF. MPM

on the nodes, by means of:

result (wrong). The comparison between the “correct”

However, as it can be seen from Eq. 39, the weighting
functions are used twice during the computation of the
= = momentum on nodes and, thus, leading to a less accurate
gn = MhVh = Z SpMp z Snp\/p (39) g
p p
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Figure 20 : Effect of the extrapolation method: numeri-
cal and analytical results of the single-material-point vi
bration problem with the “wrong” method. (a) Velocity

and displacement of centre of mass. (b) Kinematic, strain

and total energyAt = 0.001. USF.

and “wrong” extrapolations, via numerical simulation
is illustrated in Figs. 19 and 20, respectively, where a s
nificant loss of accuracy can be observed for the “wron

method.

CMES, vol.31, no.2, pp.85-106, 2008

To further improve the computation of the nodes ve-

TOCities from particles velocities, Wallstedt and Guilkey
3007) suggested the use of information related with the
elocity gradient. Nonetheless, this improvement, named
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gradient enhancement, is not considered in this paper. # o #

My, Vp(T), T, (T
5.5 Boundary conditions / 7t p(>\ 0
q2(1

a(t)
The implementation of boundary conditions, more /
specifically, constrained displacements, is not very de-\4 — 0 Ep(tlrﬁt)

tailed in the literature dedicated to the material point

method and its generalization. Here, the influence of the o,(t + At)

application of displacement boundary conditions is in- f / \ f
vestigated, where the conditions of constraints (fixities) l l
with null displacements are applied at the grid nodes by

simply zeroing the respective degrees of freedom. dq, /dt \ /d‘h/dt
For the analyses of this section, the vibration of a contin- qu(fQ vp(t + At) l
uous bar problem is solved by the MPM using 7 material \-dt =

points and 8 nodes. In this problem, the only boundary qu(t + At) a2t + At)
condition to be applied is the constrained horizontal dis- \ /
placement at the left-most nodr, (= 0). To illustrate z,(t + At)

the implementation of the boundary conditions, the three
phases: a) points to grid; b) discrete solution; and c) gfiﬁjgure 21 : “Correct’” method for the displacement
to points, discussed before, are sketched as flow Chartﬁdﬂndary conditions. USF.

Figs. 21 and 22.

Two methods are investigated: the “correct” as illustrated L PY i\
in Fig. 21 and the “improper” as in Fig. 22. In the “cor- T T
rect” method, the BC1 and BC2 steps (see Fig. 21) assure / My, Up(1), (1) \
that the momentum at the constrained node is zero, since q(t) q2(t)
qudated =1+ @1 = 0. On the other hand, the “improper” l l
method with the BC2 and BC3 steps (see Fig. 22) does

24, with the results of the simulation of the vibration of

not guarantee that the momentum on the left-most node BC3: vl(t)\ / va(t)
(fixed) is zero. This is also illustrated in Figs. 23 and (v1 < 0 ep(t + At)

a continuous bar problem using the “correct” and “im- o,(t + At)

proper” methods, respectively. The only way the “im- f / \ £
proper” method works properly is by adding another step

BC4 (as in Fig. 22), making the algorithm a bit more l l

complicated. dqi/dt \ /d(]Q /dt
Therefore, the displacement boundary conditions at grid Bd(32¢ - vp(t + At) l
—0

nodes have to be applied by zeroing the momentum at th it
fixed grid nodes during the initialization of the grid state @ (t+ At) @t + At)
(see step 3 in the algorithm of Fig. 5) and by means of the

. . (B4 AN /
zeroing of the node momentum during the computation| -~ 2, (t + At)
of the rate of momentum (see step 6 in the algorithm of -
Fig. 6).

Figure 22 : “Improper” method for the displacement
56 2D Simulations boundary conditions for the vibration of a continuous bar
problem. USF.
The application of the algorithm of Figs. 5-7 to the so-
lution of a two-dimensional problem is presented in this
section. The problem of two bouncing disks with radii
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Figure 23: Vibration of a continuous bar problem: “cor- Ky
rect” implementation of boundary conditions (BC1 & My
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Figure 25 : Bouncing disks at initial position. Coarse
space discretization.

0.015

disks. This coarse discretization corresponds to 24 ma-
terial points per disk. The colormap displays the relative
values of mean pressuge= (0x + 0y + 07)/3, where it
‘ is possible to observe that the points near the contact re-
gion have higher compressive pressures. The moment af-
[T ey — e ter the impact for this case is presented in Fig. 27, where
it is possible to observe a slight change on the shape and
relative position of material points. In addition, evotuti
of kinetic, strain, and total energy from the beginning of
Figure 24 : Vibration of a continuous bar problem: “im-the simulation to a moment after the impact is given in
proper” implementation of boundary conditions: BC3 &ig. 28.

BC2 but without BC4. 7 material points and 8 nodeghe same sjtuation is also simulated with the MPM, for
At = 0.001. USF. MPM. which the results are illustrated in Figs. 29 and 30, rep-
resenting the situation during and after the impact, re-
spectively. For this case, the change in energy is given
equal to 014 is simulated (Fig. 25). The disks have inin Fig. 31, which allows for the conclusion that the re-
tial velocities with magnitudes equal tolOsuch as they sults obtained with the MPM are slightly less smooth
are moving towards each other along the diagonal offean with the GMPM; compare, for instance, Fig. 28 with
square. They have a Young’s modulus equdtte 1.0 Fig. 31, regarding the energy; and Fig. 27 with Fig. 30,
and a Poisson’s coefficient equalve= 0.2. regarding the shape of the material points after the im-

First, the results with the GMPM of a simulation witiact. Itis also interesting to observe that the shape of the
a relatively coarse discretization, as compared with tRterial points simulated with the GMPM seems more

simulation with a fine discretization presented next, gkin with the results of the finer discretization, as shown

shown in Fig. 26. In this figure, the current time momefit the following.

corresponds to that during the impact between the twfierwards, simulations with a finer discretization (392

Displacement
-0.005  0.005

-0.015
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Figure 27 : Disks after impact. USF. GMPM.
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Figure 29 : Disks during impact. USF. MPM.
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Figure 30 : Disks after impact. USF. MPM.
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material points per disk) are presented in order to show
the influence of the results in terms of the density field
and energy conservation. The density field is, actually,
observed by means of the area (volume) of each mate-
rial point; this is illustrated through small rectangles fo
each point. Only results with the GMPM are presented
here; however, the results simulated by the MPM with
this finer discretization were quite similar with those ob-
tained with the GMPM.

In Fig. 32, the situation during the impact is illustrated,
while in Fig. 33 shows the situation after the impact. The
evolution of energy for this case is given in Fig. 34, which
allows for the conclusion that the refinement leaded to a
better conservation of energy, in addition to the smoother
simulation of the fields of stress and density (volume).
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Additionally, it can be observed that simulations ud=igure33: Bouncing disks after impact. USF. GMPM.
ing the GMPM provides a slight smoother results in

terms of density field (small volumes represented by blue Energy
squares), total, kinetic, and strain energy than thoseusin
the MPM; with more material points, the dissipation of
energy is smaller. By improving both the time and space .oma—
discretization, clearly, both methods will converge to the o

same results.
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Figure 34 : Energy — fine discr. GMPM. USF.

lems in continuum mechanics. The generalized version,
GMPM, provides a higher degree of smoothness on the
computed solution. Although the method is well dis-
cussed in the literature, a straightforward presentation
containing all steps necessary for its computer imple-
mentation is not available. Thus, this paper attempted
to give all details required.

Among the details of the implementation of the MPM or
GMPM, the setting up of essential boundary conditions,
methods for the extrapolation from particles to nodes and
vice-versa, and the order for the steps for stress-update
were clarified and some caveats discussed.

Figure32: Bouncing disks during impact. USF. GMPMTWO approaches for the stress-update were considered,

6 Conclusions

following the study by Bardenhagen (2002). It is found

that the USF (update stress first) approach, which is
called before the computation of the internal forces, gives
a better conservation of the energy than the USL (update

The material point method (MPM) is a numerical tec$iress last) approach.
nique suited for the solution of large displacement probhe essential boundary conditions at fixed nodes are ap-



Caveats Implementation Generalized Material Point Method 105

plied by zeroing the DOF components of the nodes m@uo, Y. J.; Nairn, J. A. (2006): Three-dimensional dy-
mentum during the initialization of the grid state and hyamic fracture analysis using the material point method.
means of zeroing of the rate of momentum of nodes af@@wmp. Modeling in Eng. & Sciences, vol. 16, no. 3, pp.
the computation of the internal and external forces. 141-155.

The influence of the time and space discretization were . ) . , . .
also investigated. It was observed that there is ?z\:{lna"l’ Liu, Y.; Lu, H.; Komanduri, R. (2006): Multi-

ideal balance between the number of material poir?t%ale simulation of nanoindentation using the generalized

terpolation material point (GIMP) method, dislocation

and grid nodes to achieve the best accuracy with egl;— ) .
. amics (DD) and molecular dynamics (MD)Comp.
ciency. Nonetheless, the convergence of both the M . .
Y g Modeling in Eng. & Sciences, vol. 16, no. 1, pp. 41-55.

and GMPM was illustrated, both in 1D and 2D situations.
Ma, J.; Lu, H.; Komanduri, R. (2006): Struc-
tured mesh refinement in generalized interpolation ma-
Atluri, S. N.: Zhu, T. (1998): A new meshless locaf€rial point (GIMP) method for simulation of dynamic
Petrov-Galerkin approach in computational mechani@oPlems. Comp. Modeling in Eng. & Sciences, vol. 12,
Computational Mechanics, vol. 22, pp. 117-127. no. 3, pp. 213-227.
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