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Caveats on the Implementation of the Generalized Material Point Method

O. Buzzi1, D. M. Pedroso2 and A. Giacomini1

Abstract: The material point method (MPM) is a nu-
merical method for the solution of problems in contin-
uum mechanics, including situations of large deforma-
tions. A generalization (GMPM) of this method was
introduced by Bardenhagen and Kober (2004) in order
to avoid some computational instabilities inherent to the
original method (MPM). This generalization leads to a
method more akin of the Petrov-Galerkin procedure. Al-
though it is possible to find in the literature examples
of the deduction and applications of the MPM/GMPM
to specific problems, its detailed implementation is yet
to be presented. Therefore, this paper attempts to de-
scribe all steps required for the explicit implementation
of the material point method, including its generaliza-
tion. Moreover, some caveats during the implementation
are addressed. For example, the setting up of boundary
conditions and the steps for the computation of values
at nodes and material points are discussed. The influ-
ences of the time and space discretization are also ver-
ified, basing on numerical analyses. Two strategies for
the update of stress, known as update stress first (USF)
and update stress last (USL) are numerically investigated.
It is shown that both the order for the computation of
boundary conditions and the way that the grid values are
extrapolated have high impact on the accuracy of the so-
lution. The complete 3D algorithm is detailed and sum-
marized in order to make easier the implementation of
the GMPM/MPM.

keyword: Material point method, MPM, generalized
material point method, GMPM, boundary conditions, up-
date stress first, update stress last.

1 Introduction

A goal of solid mechanics is the understanding of the me-
chanical behaviour of structures by means of the study of
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forces and displacements. However, as the material de-
forms, a rational approach for the internal response must
also be considered. The continuum mechanics is such
a theory that provides the framework for the representa-
tion of the internal response by defining the stress and
strain concepts (Eringen, 1967; Malvern, 1969). Three
requirements for the definition of a problem within the
continuum mechanics are the balance of momentum, the
kinematics of deformation, and the constitutive relations.
These lead to a boundary value problem which, depend-
ing on the complexity of the geometry and materials un-
der analysis, can not be solved analytically.

The material point method (MPM) (Sulsky, Chen, and
Schreyer, 1994; Sulsky, Zhou, and Schreyer, 1995;
Sulsky and Schreyer, 1996; Sulsky, Schreyer, Peter-
son, Kwok, and Coon, 2007) is one numerical solution
method to the continuum boundary value problem with
a range of features, for instance: a) can cope with finite
deformation problems; b) avoidance of mesh tangling;
c) ability to advect material properties without numer-
ical diffusion or artificial mixing; d) automatic no-slip
contact characteristics; and e) easy definition of the ge-
ometry. Several applications of this method to the sim-
ulation of a range of problems, including stress propa-
gation, dynamic fracture, multiscale simulations, mesh
refinement, among others, can be found on the litera-
ture (Bardenhagen, Guilkey, Roessig, Brackbill, Witzel,
and Foster, 2001; Shen and Chen, 2005; Guo and Nairn,
2006; Ma, Lu, Wang, Roy, Hornung, Wissink, and Ko-
manduri, 2005; Ma, Liu, Lu, and Komanduri, 2006; Ma,
Lu, Wang, Hornung, Wissink, and Komanduri, 2006;
Ma, Lu, and Komanduri, 2006).

Nonetheless, the computer implementation of the ma-
terial point method requires carefully designed steps in
order to guarantee that first the method works properly
and second a good accuracy and some efficiency can be
achieved during simulations. Three main aspects must be
considered: a) the establishment of the boundary condi-
tions; b) the extrapolation and interpolation of particles
quantities to grid nodes and vice-versa; and c) the order
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for the update of stress: before or after the solution for
the discrete balance of momentum. The first one is dis-
cussed here, while the second one is studied in details by
Bardenhagen and Kober (2004). The last one is discussed
in Bardenhagen (2002).

Due to computational instabilities, a generalization
known as the generalized interpolation material point
method, here referred to as GMPM, was developed by
Bardenhagen and Kober (2004) using a sort of Petrov-
Galerkin procedure and, thus, resulting in a method more
akin of meshless method such as the meshless local
Petrov-Galerkin (MLPG) method (Atluri and Zhu, 1998).
Like in the MPM, the GMPM relies on an underlying
grid at least for the solution of the discrete governing
equations. Therefore, since the grid can be interpreted
as an updated Lagrangian frame, the method is a also
mix of (arbitrary) Eulerian and Lagrangian approaches
(Sulsky, Chen, and Schreyer, 1994; Sulsky, Zhou, and
Schreyer, 1995; Sulsky and Schreyer, 1996; Wieckowski,
Youn, and Yeon, 1999).

This paper discusses some potential pitfalls that may
arise during the explicit implementations of the (gener-
alized) material point method. In addition, the two pro-
cedures for updating the stress: a) at advance (USF), or b)
lastly (USL) are studied in terms of numerical accuracy
and efficiency.

2 Notation

Tensor notation is employed here. The order of every
entity is indicated by adding the correspondent number of
primes “′” to their symbol. For example, vectors, which
are entities of first order, are indicated by:

′
vvv = vi

′
eeei⊗

′
eee j (Orthonormal Cartesian System OCS) (1)

in which vi are the Cartesian components of the vector in
a system of reference with the orthonormal bases vectors

′
eeei. The dyadic product between two vectors is defined as:

′′
TTT =

′
uuu⊗

′
vvv = uiv j

′
eeei⊗

′
eee j (OCS) (2)

in which
′′
TTT is a second order tensor. The derivatives of

vectors and tensors are given by

d
′
vvv

d
′
xxx

=
∂vi

∂x j
′
eeei⊗

′
eee j (3)

d
′′
σσσ

d
′
xxx

=
∂σi j

∂xk
′
eeei⊗ ′

eee j⊗ ′
eeek (4)

rendering a second and a third order tensor, respectively.

Nodes quantities are denoted by using “n” in the sub-
scripts and material points, or particles, by using “p” in
the subscripts. The term “particles” and “material points”
are used interchangeably, even though the term “parti-
cles” may lead to a discrete interpretation, which is not
the case here.

For the graphics, the following convention is selected:
the material points are represented by black dots and the
nodes by void dots.

3 Generalized Material Point Method

The material point method (MPM) solves the variational
form of the conservation of momentum by means of the
discretization of the continuum media into particles or
material points (Sulsky, Chen, and Schreyer, 1994; Sul-
sky, Zhou, and Schreyer, 1995). By leaving the masses
of these particles unchanged, the conservation of mass
is implicitly satisfied. The conservation of energy is not
considered in this method. In addition to the discretiza-
tion via particles, an underlying grid is used to compute
the solution for the conservation of momentum and up-
date the particles state. Therefore two sets of interpola-
tion/extrapolation functions of position (

′
xxx) are required:

a) the particle characteristic functionsχp( ′xxx); and b) the
grid shape functionsSn( ′xxx).

In the original MPM (Sulsky, Chen, and Schreyer, 1994;
Sulsky, Zhou, and Schreyer, 1995), the particle charac-
teristic functions are of the form:

χp( ′xxx) = δ(
′
xxx−

′
xxxp)Vp (5)

in which δ corresponds to the Dirac delta function,
′
xxxp is

the particle position, andVp is the particle volume.

A generalized form of the material point method
(GMPM) was introduced by Bardenhagen and Kober
(2004) where any particle characteristic functions can be
adopted. Depending on the selection for these functions,
the method provides an additional degree of smoothness
to the solution. On the other hand, the original MPM may
suffer of numerical noise, mainly when material points
cross some cells in the computational grid (Bardenhagen
and Kober, 2004).

This paper discusses the GMPM, whereas the MPM can
be directly recovered by selecting Eq. 5 as particle char-
acteristic function (χp).
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As presented by Bardenhagen and Kober (2004), the
derivation of the GMPM starts with the variational form
of the conservation of momentum:

Z

A ′
www•

′
tttdA +

Z

V
ρ
′

www•
′
bbbdV −

Z

V

d
′

www

d
′
xxx

:
′′
σσσdV =

Z

V
ρ
′
www•

′
aaadV

(6)

in which
′

www,
′
ttt,

′
bbb, and

′
aaa are vectors representing the

weighting functions, tractions, body forces, and accel-
erations, respectively, and

′′
σσσ is the stress tensor.ρ is a

scalar indicating the density field.

The density, stress, and acceleration continuum fields are
discretized into material points by means of the particle
characteristic functions according to:

ρ(
′
xxx) = ∑

p

mpχp( ′xxx)

Vp
(7)

′′
σσσ(

′
xxx) = ∑

p
′′
σσσpχp(

′
xxx) (8)

ρ(
′
xxx)
′
aaa(
′
xxx) = ∑

p

′
q̇̇q̇qpχp(

′
xxx)

Vp
(9)

wheremp are the particle masses and
′
q̇̇q̇q indicates the rate

of momentum.

The weighting functions and their derivatives with re-
spect to position are discretized according to a compu-
tational grid by means of:

′
www(

′
xxx) = ∑

n
Sn(

′
xxx)
′

wwwn (10)

d
′

www(
′
xxx)

d
′
xxx

= ∑
n
′

wwwn⊗
′

GGGn( ′xxx) (11)

in which:

′
GGGn(

′
xxx) =

dSn(
′
xxx)

d
′
xxx

(12)

By substituting Eqns. 7-12 into Eq. 6, the discrete gov-
erning equations are obtained:

′
fff e

n−
′
fff i

n =
′
q̇̇q̇qn (13)

where the external forces are:

′
fff e

n =
Z

A
Sn
′
tttdA +∑

p
mp

′
bbbSnp, (14)

the internal forces are:

′
fff i

n = ∑
p

Vp
′′
σσσp •

′
GGG

np
, (15)

and the rate of momenta evaluated at grid nodes are:

′
q̇̇q̇qn = ∑

p ′
q̇̇q̇qpSnp (16)

In Eqns. 14-16,Snp and
′

GGG
np

are weighting and gradient-

weighting functions, respectively, and are given by (see
details in Bardenhagen and Kober, 2004):

Snp( ′xxx) =
1

Vp

Z

V ∗
Sn( ′xxx)χp( ′xxx)dV (17)

′
GGG

np
(
′
xxx) =

1
Vp

Z

V ∗ ′
GGGn(

′
xxx)χp(

′
xxx)dV (18)

whereV ∗=V ∩Vp denotes the current support of the par-
ticle characteristic functions. Note that both functions
depend implicitly on the grid nodes positions

′
xxxn and par-

ticle position
′
xxxp.

4 Aspects of implementation

In this paper, the explicit solution in time is considered,
where the time step is given by∆t.

Three phases are necessary for the explicit implemen-
tation of the GMPM (or MPM): a) initialization of the
underlying grid; b) solution of the discrete balance of
momentum at grid nodes; and c) update of the material
points state. However, two intermediary steps must also
be considered: i) stress update of the material points; and
ii) setting up of boundary conditions. The order of these
two steps in the algorithm affects the accuracy and ef-
ficiency of the method. The first step (i) can be imple-
mented before or after the computation of the internal
forces, and, thus, before or after the discrete solution of
the balance of momentum. Bardenhagen (2002) explains
the difference in the solution using these two approaches
for step (i), where the methods known as update stresses
first (USF) and update stresses last (USL) are analysed
using an energy point of view. In this paper, attention
is focused on the numerical characteristics of both algo-
rithms. The second step (ii) can be done by zeroing some
terms on the computation grid, for the case of essential
boundary conditions givena priori. Nonetheless, this
last step (ii) must be called in the right position inside
the explicit loop.
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Figure 1 : Entities computed at grid nodes (n) and re-
quired at material points (p).

Not every mechanical entity is required at the material
points and grid nodes at the same time. Actually, the
mass (mp), velocity (

′
vvvp), strain (

′′
εεεp), stress (

′′
σσσp), and

body masses (
′
bbbp) are recorded at material points. The

mass (mn), momentum (
′
qqqn), internal force (

′
fff i

n), external

force (
′
fff e

n), and rate of momenta (
′
q̇̇q̇qn) are computed at grid

nodes (see Fig. 1). Clearly, the position of nodes (
′
xxxn) and

material points (
′
xxxp) must be known or computed every

time. The velocity of nodes (
′
vvvn) is only necessary tem-

porarily, during the stress update, as discussed later, and
hence does not have to be stored in the computer mem-
ory.

The algorithm that considers the first approach (USF) for
the update of stresses is illustrated in Fig. 2 and is ex-
plained as follows. For each time step, clear the grid
values (see Fig. 1), calculate the weighting and gradient-
weighting functions, and then:

1. Compute node mass from particle masses

2. Compute node momentum from particle masses and
velocities

3. Compute node velocity from grid mass and momen-
tum

4. Compute particle strains from grid velocity

5. Update particle stress from particle strains

6. Compute internal forces from particle stresses

7. Compute external forces from particle body masses

8. Compute the rate of momentum for grid nodes

9. Update grid momentum from the rate of momentum
at nodes

10. Update particle velocities from the rate of momen-
tum at nodes

11. Update particle positions from the updated grid mo-
mentum
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Figure 2 : Update stress first (USF): entities computed at
grid nodes (n) and material points (p).

In this algorithm (USF - Fig. 2), the steps (1), (2), and (3)
correspond to the phase a) initialization of the underlying
grid, the steps (4) and (5) correspond to the intermediary
step (i) update of particle stresses, the steps (6), (7) and
(8) correspond to the phase b) solution of the discrete
momentum balance, and the steps (9), (10), and (11) cor-
respond to the phase c) update of particles states.

The algorithm which considers the second approach
(USL) for the update of stresses is illustrated in Fig. 3,
where the steps are: for each time step, clear the grid
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values, calculate the weighting and gradient-weighting
functions, and then:

1. Compute grid mass from particle masses
2. Compute grid momentum from particle masses and

velocities
3. Compute internal forces from particle stresses
4. Compute external forces from particle body masses
5. Compute the rate of momentum for grid nodes
6. Update grid momentum from the rate of momentum

at nodes
7. Update particle velocities from the rate of momen-

tum at nodes
8. Update particle positions from the updated grid mo-

mentum
9. Compute grid velocity from grid mass and momen-

tum
10. Compute particle strains from grid velocity
11. Update particle stress from particle strains

In the USL algorithm (Fig. 3), the steps (1) and (2) cor-
respond to the first phase, the steps (3), (4), and (5) cor-
respond to the second phase, and the steps (6), (7), (8)
correspond to the third phase. In this approach (USL),
the steps (9), (10), and (11) are the ones for the interme-
diary step (i).

A complete study between the two approaches, USF and
USL, is given by Bardenhagen (2002). Here, the focus
is on the detailed implementation of the algorithm, con-
sidering the computation of the interpolation functions,
setting up of boundary conditions, and numerical accu-
racy. Only the explicit version of the MPM is considered
here, while details about the implicit implementation can
be found elsewhere, for example in Guilkey and Weiss
(2003).

4.1 Structured grid

Since the grid can have any shape, a structured grid can
be adopted, resulting in great convenience, for example,
when tracking the location of material points. This track-
ing must be done for each time step, before computing
the weighting and weighting-gradient coefficients.

During the initialization phase, the values at the nodes
can be accumulated from the values at the points; how-
ever it is more convenient to loop over all material points
and add the contributions from each point to the sur-
rounding nodes. This approach of implementation can
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Figure 3 : Update stress last (USL): entities computed at
grid nodes (n) and material points (p).

also facilitate a parallel implementation of the method,
considering that each point needs to add only to the sur-
rounding nodes of the grid. Therefore, for example, each
processor will have to record only those grid nodes in the
domain where the tracked particles would contribute to.

In higher dimensions, 2D and 3D, it is common to adopt
grid shape functions defined as product of two nodal tent
functions (see e.g Bardenhagen and Kober, 2004; Dapha-
lapurkar, Lu, Coker, and Komanduri, 2007), according
to:

Sn(
′
xxx) = Sx

n(x) ·S
y
n(y) ·S

z
n(z) (19)

The same can be adopted for the particle characteristics
functions:

χp( ′xxx) = χx
p(x) ·χ

y
p(y) ·χ

z
p(z) (20)

Due to the definition of “weighting” and “gradient-
weighting” functions (Eq. 17 and Eq. 18) in the GMPM,
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the grid support of these functions will range more points
than in the MPM. Actually, in the 2D MPM, each par-
ticle contributes to 4 nodes, while in the 2D GMPM,
each particle contributes to at most 16 nodes. For three-
dimensional problems, in the MPM, each particle con-
tributes to 8 nodes, while in the GMPM, each particle
contributes to 64 nodes. This can be observed, for in-
stance, in Fig. 4 where all nodes 7-10, 13-16, 19-22, and
25-28 will receive contributions from particle “p” in the
2D GMPM, while only nodes 14,15,20, and 21 will get
any contribution in the 2D MPM.

With a structured grid, it is possible to define a reference
node (see Fig. 4) and to loop over all the contributing
nodes. For the MPM, the number of this node can be
computed using the following expression:

n∗p = trunc

(

xp− xmin

∆x

)

+ trunc

(

yp− ymin

∆y

)

Nx

+ trunc

(

zp− zmin

∆z

)

NxNy (21)

wherexmin, ymin and zmin are the minimum grid nodes
coordinates;xp, yp andzp are the coordinates of the ma-
terial point. Thetrunc function returns the entire value
of a number. The terms withNx (number of nodes along
thex direction) andNy (number of nodes along they di-
rection) can be dropped in case of 1D or 2D simulations,
respectively. For the GMPM, the reference node is in one
cell further from the cell where the material point under
consideration is located (see Fig. 4), since the support of
the interpolation function is bigger. In this case, the ref-
erence node can be found using the following expression:

n∗p = trunc

(

xp− xmin

∆x

)

−1

+

[

trunc

(

yp− ymin

∆y

)

−1

]

Nx

+

[

trunc

(

zp− zmin

∆z

)

−1

]

NxNy (22)

In the USF approach, for each time-step, the weighting
values are used 3 times and the weighting-gradient val-
ues are used 2 times. Therefore, if memory is not a lim-
itation, these values can be computed once at the begin-
ning of the time-step at stored in two arrays. For the
3D situation using the GMPM, each point will need 64
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Figure 4 : Structured grid and reference nodes.

float points for the weighting values and 3× 64 for the
weighting-gradients, which may lead to a memory de-
manding implementation.

In the algorithm presented here, the implementation with
pre-allocated arrays for the weighting and weighting-
gradients is adopted. These arrays are:

Spr = Snp( ′xxxn, ′xxxp) (23)

and

′
GGGpr =

′
GGG

np
(
′
xxxn,

′
xxxp) (24)

wherer corresponds to the range of nodes that each ma-
terial point have some contribution (1≤ r≤ 2NDIM for the
MPM, and 1≤ r ≤ 4NDIM for the GMPM) andn can be
found from this range by means of Eq. 21 or Eq. 22.

4.2 First phase: points to grid

The two principal entities required at grid nodes are the
mass (mn) and the momentum (

′
qqqn). During the initializa-

tion step, an extrapolation of these values from the parti-
cles to the grid nodes must be carried out. One approach
is to use the weighting functions according to:

mn = ∑
p

Snpmp (25)

and

′
qqqn = ∑

p
Snpmp

′
vvvp (26)

Note that the momentum on the particles is not required
explicitly in this implementation, since the momentum
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on the nodes is computed directly from the mass and ve-
locity on the particles (material points). This point will
be discussed in section 5.4.

Additionally, in this step, the essential boundary condi-
tions must be considered. In this case, for each con-
strained direction, the correspondent component of the
momentum at nodes is cleared:

qfixed-nodes
k = 0 {k ∈ Dconstrained} (27)

in whichDconstrained is the set of all constrained directions
(degrees of freedom - DOFs). The order that this step is
implemented in the algorithm is important in terms of ac-
curacy. For example, if the velocities are set equal to zero
for the fixed nodes during the stress-update, the bound-
ary conditions will not be considered during the update
of nodes position.

4.3 Second phase: discrete solution

The solution of the discrete governing equations is quite
simple in both the explicit MPM and GMPM. This is ac-
complished by subtracting the external forces from the
internal forces and updating the nodes momentum ac-
cording to Eq. 13. The caveat here is that the update
of the nodes momentum must be done after the consid-
eration of the essential boundary conditions. These are
set simply by zeroing the components of the rate of mo-
mentum of the fixed nodes, for each constrained direction
(DOF):

q̇fixed-nodes
k = 0 {k ∈ Dconstrained} (28)

This phase can be viewed as an updated Lagrangian pro-
cedure, since the nodes are actually moving, at least tem-
porarily and until the material points (or particles) are
updated.

If the update stress first (USF) is selected, the strains and
stresses in the material points must be updated at this
stage, where the strain increment can be calculated from
the (grid nodes) velocity gradient by means of a volume
weighted average over each particle, according to:

∆
′′
εεεp = ∆t ∑

n

1
2

(

′
vvvn⊗

′
GGG

np
+

′
GGG

np
⊗
′
vvvn

)

(29)

The increment of stress can then be calculated by any
conventional stress-update algorithm. For non-linear
constitutive laws, the explicit schemes based on the
embedded-Runge-Kutta of second order can be adopted

(see, for example, Sloan, 1987; Sloan and Booker, 1992;
Sloan, Abbo, and Sheng, 2001; Pedroso, Sheng, and
Sloan, 2008) resulting in a convenient algorithm due to
the automatic substepping technique.

4.4 Third phase: grid to points

As discussed in Bardenhagen and Kober (2004), since
there are not necessarily unique relationships between
points and nodes, an weighted averaged approach have
to be selected in order to extrapolate (back) the solution
from grid nodes to the material points. To this end, the
position and velocity of the particles are also updated by
using the weighting functions, according to:

′
xxxp =

′
xxxp + ∆t ∑

n

Snp
′
qqqn

mn
(30)

′
vvvp =

′
vvvp + ∆t ∑

n

Snp
′
q̇̇q̇qn

mn
(31)

It is important to note that care must be taken with grid
nodes that have no mass (herein referred to as phantom
nodes), or that have a small mass as compared to a toler-
anceMTOL, because the denominator in Eqns. 30 and 31
for the conversion of node momentum to node velocity.

As discussed by Chen and Brannon (2002), particle in-
terpenetration is precluded due to the use of nodes mo-
mentum in Eq. 30.

4.5 Complete algorithm

For each time-step, the grid values must be cleared, in
other words, the previous grid is discarded, and the in-
terpolation values are computed again. Then the three
phases, a) points to grid, b) discrete solution, and c) grid
to points are repeated for each time step. The main loop
in the explicit algorithm can be organized into 8 steps, as
shown in details in Fig. 5-Fig. 7:

1. Discard previous grid
2. Compute interpolation values
3. Initialize grid state
4. Update strain and stress (USF)
5. Compute internal and external forces
6. Compute rate of momentum and update nodes
7. Update material points
8. Update strain and stress (USL)

Note that steps 4 and 8 are exclusive.



92 Copyright c© 2008 Tech Science Press CMES, vol.31, no.2, pp.85-106, 2008

! Initialize material points
mp,

′
vvvp,

′′
εεεp,

′′
σσσp,

′
bbbp,

′
xxxp

! Range of contributions (shape functions support)
if (GMPM) Rcontr. = [0,1,2,3] else Rcontr. = [0,1]
! Run explicit update
while (t < t f )

! 1) Discard previous grid
mn = 0,

′
qqqn =

′
000,

′
fff i

n =
′
000,

′
fff e

n =
′
000,

′
q̇̇q̇qn =

′
000

! 2) Compute interpolation values
for (p in 1 to Nparticles)

Compute:n∗p ! Ref. nodes (Eq. 21 or Eq. 22)
r = 1 ! Position in the S and

′
GGG arrays

for (i, j,k in Rcontr.×Rcontr.×Rcontr.)
n = n∗p + i+ jNx + kNxNy

Spr = Snp(
′
xxxn,

′
xxxp)

′
GGGpr =

′
GGG

np
(
′
xxxn, ′xxxp)

r = r +1
end

end
! 3) Initialize grid state (mass and momentum)
for (p in 1 to Nparticles)

r = 1
for (i, j,k in Rcontr.×Rcontr.×Rcontr.)

n = n∗p + i+ jNx + kNxNy

mn = mn + Sprmp

′
qqqn =

′
qqqn + Sprmp

′
vvvp

if (n is fixed)
′
qqqn =

′
000 ! Fix nodes

r = r +1
end

end
! 4) Update strain and stress
if (USF)call UpdateStrainsAndStresses
! 5) Compute internal and external forces
for (p in 1 to Nparticles) r = 1

for (i, j,k in Rcontr.×Rcontr.×Rcontr.)
n = n∗p + i+ jNx + kNxNy

′
fff i

n =
′
fff i

n +Vp
′′
σσσp •

′
GGGpr

′
fff e

n =
′
fff e

n + mp ′
bbbpSpr

if (p has tractions)
′
fff e

n =
′
fff e

n +
R

A Sn ′
tttdA

r = r +1
end

end

Figure 5 : Explicit MPM/GMPM algorithm.

! 6) Compute rate of momentum and update nodes
for (n in 1 to Nnodes)

′
q̇̇q̇qn =

′
fff e

n−
′
fff i

n

if (n is fixed)
′
q̇̇q̇qn =

′
000 ! Fix nodes

′
qqqn =

′
qqqn +

′
q̇̇q̇qn∆t

end
! 7) Update material points (position and velocity)
for (p in 1 to Nparticles)

r = 1
for (i, j,k in Rcontr.×Rcontr.×Rcontr.)

n = n∗p + i+ jNx + kNxNy

if (mn > MTOL)

′
xxxp =

′
xxxp + ∆tSpr

′
qqqn/mn

′
vvvp =

′
vvvp + ∆tSpr

′
q̇̇q̇qn/mn

end
r = r +1

end
end
! 8) Update strain and stress
if (USL) call UpdateStrainsAndStresses
! Update time
t = t + ∆t

end

Figure 6 : Explicit MPM/GMPM algorithm (cont).

! Update strain and stress
for (p in 1 to Nparticles)

r = 1, ∆
′′
εεε =

′′
000

for (i, j,k in Rcontr.×Rcontr.×Rcontr.)
n = n∗p + i+ jNx + kNxNy

if (mn > MTOL)
′
vvvn =

′
qqqn/mn else

′
vvvn = 0

∆
′′
εεε = ∆

′′
εεε+0.5(

′
vvvn⊗

′
GGGpr +

′
GGGpr⊗

′
vvvn)∆t

r = r +1
end

′′
εεεp =

′′
εεεp + ∆

′′
εεε

call Update
′′
σσσp for ∆

′′
εεε

end

Figure 7 : Update strains and stresses.

5 Features and caveats

To illustrate the features and to discuss further the caveats
during the implementation of the GMPM and MPM, two
simple problems in one-dimensional space are analysed.
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Only a numerical study is carried out here. These are the
single-material-point vibration problem and the axial vi-
bration of a continuum bar, as discussed in Bardenhagen
(2002) using the original MPM, but here they are also
analysed using the generalized material point method
(GMPM). Both of these problems have exact analytical
solutions, thus the accuracy can be easily investigated.

Fig 8 illustrates the single-material-point vibration, while
the vibration of a continuum bar is solved using many
material points distributed in this bar.

mp0 L

xp0

xv0

Figure 8 : Single-material-point vibration. The bar is
represented by a single point initially located atxp0 =
L/2, which has an initial velocityv0.

For the single-material-point vibration problem, the bar
has Young’s modulus equal toE = 4π2 and length equal
to L = 1. The point, represented by a black dot, is orig-
inally located atxp0 = L/2 and has an original velocity
v0. The grid is made of two nodes located atx = 0 and
x = L and represented by circles. In this problem, there
is no gravity. The solution in this case is given by:

v(t) = v0 cos(wt) (32)

for the velocity and

x(t) = x0 exp
[ v0

Lw
sin(wt)

]

(33)

for the position, wherew = 1
L

√

E
ρ and the density is con-

sidered constant (equal to 1).

For the vibration of a continuum bar, the Young’s mod-
ulus adopted isE = 10, the length isL = 1 and the an-
alytical solution depends now on the mode of vibration
(Meirovitch, 1967). Here, only the first mode (n = 1) is
considered. Then, the solution is

v(x, t) = vo cos(w1t)sin(β1x) (34)

for velocities and

u(x, t) =
vo

w1
sin(w1t)sin(β1x) (35)

for displacements, whereβ1 = π
2L andw1 = π

2L

√

E
ρ . The

subscript 1 refers to the first mode of vibration. In this
problem, however, the initial conditions are also depen-
dent of the position and have to be set according to:

v(x,0) = vo sin(β1x) (36)

for velocities and

u(x,0) = 0 (37)

for displacements.

5.1 USFversus USL

The two approaches, USL and USF, are evaluated for
the solution of the single-material-point vibration prob-
lem. Here, the solution is achieved using both the MPM
and the GMPM. The results are presented in Figs. 9-12.
Figs. 9 and 10 presents the results computed using the
MPM, for each approaches USF and USL, respectively
and Figs. 11 and 12 presents the results using the GMPM
with the USF and USL, respectively. In each figure, the
numerical and analytical values of displacement and ve-
locity are plotted as a function of time. The strain, kine-
matic and total energy are also shown in order to assess
the conservation of energy.

The results obtained with the MPM and USF (Fig. 9) are
reasonably accurate when comparing with the analytical
solutions. The results obtained with the MPM and USL
(Fig. 10) exhibits a higher dissipation of energy, leading
to a less accurate solution both in terms of velocities and
displacement. These results are in accordance with those
presented by Bardenhagen (2002).

For the GMPM, the behaviour in terms of energy dissipa-
tion is the same as for the MPM (Figs. 11 and 12). How-
ever, the accuracy in the displacements is lower in the
case of this single-material-point problem. In the case of
the vibration of a continuum bar, as the number of ma-
terial points increase, the solution using the GMPM be-
comes much better. This is illustrated in Figs. 13-14. In
Fig. 13 the USF approach is used, where no energy dis-
sipation can be easily observed, and in Fig. 14, this dis-
sipation can be observed in the solution using the USL
approach, in a similar trend as with using the MPM for
the solution of the single-material-point vibration prob-
lem.
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Figure 9 : Numerical and analytical results of the single-
material-point vibration problem with the USF (update
stress first) approach. (a) Velocity and displacement of
centre of mass. (b) Kinematic, strain and total energy.
∆t = 0.001. MPM.

5.2 Influence of the time step

As in every numerical method, spatial and time dis-
cretization play a key role on the accuracy of the re-

0.0 0.2 0.4 0.6 0.8 1.0
Nodes/Points position

0 2 4 6 8 10

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

Time

V
el

oc
ity

0 2 4 6 8 10

−
0.

00
5

0.
00

0
0.

00
5

Time

D
is

pl
ac

em
en

t

Analytical Numerical

0 2 4 6 8 10

0.
00

0
0.

00
2

0.
00

4

Time

E
ne

rg
y

Kinematic Strain Total

Figure 10 : Numerical and analytical results of the
single-material-point vibration problem with the USL
(update stress last) approach. (a) Velocity and displace-
ment of centre of mass. (b) Kinematic, strain and total
energy.∆t = 0.001. MPM.

sults. To assess the convergence features of the MPM
and GMPM as these discretizations are improved, the
problem of single-material-point vibration is numerically
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Figure 11 : Numerical and analytical results of the
single-material-point vibration problem with the USF
(update stress first) approach. (a) Velocity and displace-
ment of centre of mass. (b) Kinematic, strain and total
energy.∆t = 0.001. GMPM.

solved where the following error measure is defined:

ε =
|| va− vn ||

1+ || va ||
(38)
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Figure 12 : Numerical and analytical results of the
single-material-point vibration problem with the USL
(update stress last) approach. (a) Velocity and displace-
ment of centre of mass. (b) Kinematic, strain and total
energy.∆t = 0.001. GMPM.

in which va is the analytical solution for the velocity
at the centre of mass whilevn is the numerical solution.
Fig. 15 shows the evolution of the computed error with
respect to time for two different time steps∆t = 0.1 and
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Figure 13 : Numerical and analytical results of the vibra-
tion of a continuum bar problem (13 material points and
14 nodes) with USF (update stress first) approach. (a)
Velocity and displacement of centre of mass. (b) Kine-
matic, strain and total energy.∆t = 0.001. GMPM

∆t = 0.0001. As expected, decreasing the time step, the
accuracy improves considerably.
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Figure 14 : Numerical and analytical results of the vibra-
tion of a continuous bar problem (13 material points and
14 nodes) with the USL (update stress last) approach. (a)
Velocity and displacement of centre of mass. (b) Kine-
matic, strain and total energy.∆t = 0.001. GMPM
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Figure 15 : Evolution of the numerical error on the ve-
locity at the centre of massversus time for the single-
material-point vibration problem.Simulations run using
the MPM, USF and two different time increments∆t =
0.1 and∆t = 0.0001.

Additionally, in all results presented so far, a slight oscil-
lation can be noticed on the evolution of total energy. To
reduce this oscillation, the time step can be reduced. For
example, instead of using∆t = 0.001 as before, the ten-
times smaller increment∆t = 0.0001 can be considered,
resulting in a better accuracy (see Fig. 16). In Fig. 16,
different time steps are adopted, in which it is possible to
observe that the oscillations tend to vanish with smaller
time steps. Moreover, as the time step decreases, it is
possible to observe that the dissipation on the total en-
ergy computed with the USL approach also decreases.
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Figure 16 : Influence of the time step on the total energy
using the USL (update stress last) approach.

5.3 Space discretization

The convergence of the solution using the MPM is fur-
ther investigated by means of numerical analyses. The
vibration of a continuum bar problem is solved again,
where now both the number of material points and grid
nodes are varied. In Fig. 17, the results using the MPM
with the USF approach, 3 and 7 material points, and 2
grid nodes are presented. In this case it is possible to ob-
serve a relatively high error in the velocity at the centre of
mass of the bar. Increasing only the number of material
points (Fig. 17(b)) does lead to improvement of accuracy.
On the contrary, as illustrated in Fig. 18, increasing both
the number of grid nodes (4 and 8) and material points
(3 and 7), in order to obtain an homogeneous repartition
of nodes and materials points, improves significantly the
accuracy.

5.4 Extrapolation of point momentum to grid momen-
tum

The first phase of the algorithm, after the calculation of
the interpolation functions and initialization the material
points, is to extrapolate the material data (mass and mo-
mentum) from the point to the grid nodes. The extrap-
olation of point mass does not rise any particular issue
whereas interpolation of the momentum can lead to less
accurate results. The correct method is to extrapolate di-
rectly the point momentum (Sulsky, Zhou, and Schreyer,
1995; Bardenhagen, 2002) using the weighting functions
according to Eq. 26 (

′
qqqn = ∑p Snpmp

′
vvvp). An alternative
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Figure 17 : Effect of spatial discretization: numeri-
cal and analytical velocity of the centre of mass for the
vibration of a continuous bar problem. (a) 3 material
points and 2 nodes. (b) 7 material points and 2 nodes.
∆t = 0.001. USF. MPM

method would be to interpolate the mass and velocity on
the nodes, separately, and then compute the momentum
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Figure 18 : Effect of spatial discretization: numeri-
cal and analytical velocity of the centre of mass for the
vibration of a continuous bar problem. (a) 3 material
points and 4 nodes. (b) 7 material points and 8 nodes.
∆t = 0.001. USF. MPM

on the nodes, by means of:

′
qqqn = mn

′
vvvn = ∑

p
Snpmp ∑

p
Snp

′
vvvp (39)
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Figure 19 : Effect of the extrapolation method: numeri-
cal and analytical results of the single-material-point vi-
bration problem point with the “correct” method. (a) Ve-
locity and displacement of centre of mass. (b) Kinematic,
strain and total energy.∆t = 0.001. USF.

However, as it can be seen from Eq. 39, the weighting
functions are used twice during the computation of the
momentum on nodes and, thus, leading to a less accurate
result (wrong). The comparison between the “correct”
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Figure 20 : Effect of the extrapolation method: numeri-
cal and analytical results of the single-material-point vi-
bration problem with the “wrong” method. (a) Velocity
and displacement of centre of mass. (b) Kinematic, strain
and total energy.∆t = 0.001. USF.

and “wrong” extrapolations, via numerical simulations,
is illustrated in Figs. 19 and 20, respectively, where a sig-
nificant loss of accuracy can be observed for the “wrong”
method.

To further improve the computation of the nodes ve-
locities from particles velocities, Wallstedt and Guilkey
(2007) suggested the use of information related with the
velocity gradient. Nonetheless, this improvement, named



Caveats Implementation Generalized Material Point Method 101

gradient enhancement, is not considered in this paper.

5.5 Boundary conditions

The implementation of boundary conditions, more
specifically, constrained displacements, is not very de-
tailed in the literature dedicated to the material point
method and its generalization. Here, the influence of the
application of displacement boundary conditions is in-
vestigated, where the conditions of constraints (fixities)
with null displacements are applied at the grid nodes by
simply zeroing the respective degrees of freedom.

For the analyses of this section, the vibration of a contin-
uous bar problem is solved by the MPM using 7 material
points and 8 nodes. In this problem, the only boundary
condition to be applied is the constrained horizontal dis-
placement at the left-most node (xn = 0). To illustrate
the implementation of the boundary conditions, the three
phases: a) points to grid; b) discrete solution; and c) grid
to points, discussed before, are sketched as flow charts in
Figs. 21 and 22.

Two methods are investigated: the “correct” as illustrated
in Fig. 21 and the “improper” as in Fig. 22. In the “cor-
rect” method, the BC1 and BC2 steps (see Fig. 21) assure
that the momentum at the constrained node is zero, since
qupdated

1 = q1+ q̇1 = 0. On the other hand, the “improper”
method with the BC2 and BC3 steps (see Fig. 22) does
not guarantee that the momentum on the left-most node
(fixed) is zero. This is also illustrated in Figs. 23 and
24, with the results of the simulation of the vibration of
a continuous bar problem using the “correct” and “im-
proper” methods, respectively. The only way the “im-
proper” method works properly is by adding another step
BC4 (as in Fig. 22), making the algorithm a bit more
complicated.

Therefore, the displacement boundary conditions at grid
nodes have to be applied by zeroing the momentum at the
fixed grid nodes during the initialization of the grid state
(see step 3 in the algorithm of Fig. 5) and by means of the
zeroing of the node momentum during the computation
of the rate of momentum (see step 6 in the algorithm of
Fig. 6).

5.6 2D Simulations

The application of the algorithm of Figs. 5-7 to the so-
lution of a two-dimensional problem is presented in this
section. The problem of two bouncing disks with radii

q1(t)
BC1:
q1 ← 0

q1(t + ∆t) q2(t + ∆t)

BC2:
dq1

dt
← 0

q2(t)

εp(t + ∆t)

σp(t + ∆t)

f1 f2

dq2/dtdq1/dt

vp(t),

xp(t + ∆t)

xp(t)

vp(t + ∆t)

mp,

Figure 21 : “Correct” method for the displacement
boundary conditions. USF.

q1 ← 0

q1(t + ∆t) q2(t + ∆t)

BC2:
dq1

dt
← 0

v1(t) v2(t)

εp(t + ∆t)

σp(t + ∆t)

f1 f2

dq2/dtdq1/dt

BC3:
v1 ← 0

BC4:

q2(t)q1(t)

mp,vp(t),

xp(t + ∆t)

xp(t)

vp(t + ∆t)

Figure 22 : “Improper” method for the displacement
boundary conditions for the vibration of a continuous bar
problem. USF.
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Figure 23 : Vibration of a continuous bar problem: “cor-
rect” implementation of boundary conditions (BC1 &
BC2). 7 material points and 8 nodes.∆t = 0.001. USF.
MPM.
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Figure 24 : Vibration of a continuous bar problem: “im-
proper” implementation of boundary conditions: BC3 &
BC2 but without BC4. 7 material points and 8 nodes.
∆t = 0.001. USF. MPM.

equal to 0.14 is simulated (Fig. 25). The disks have ini-
tial velocities with magnitudes equal to 0.1 such as they
are moving towards each other along the diagonal of a
square. They have a Young’s modulus equal toE = 1.0
and a Poisson’s coefficient equal toν = 0.2.

First, the results with the GMPM of a simulation with
a relatively coarse discretization, as compared with the
simulation with a fine discretization presented next, is
shown in Fig. 26. In this figure, the current time moment
corresponds to that during the impact between the two

Figure 25 : Bouncing disks at initial position. Coarse
space discretization.

disks. This coarse discretization corresponds to 24 ma-
terial points per disk. The colormap displays the relative
values of mean pressurep = (σx + σy + σz)/3, where it
is possible to observe that the points near the contact re-
gion have higher compressive pressures. The moment af-
ter the impact for this case is presented in Fig. 27, where
it is possible to observe a slight change on the shape and
relative position of material points. In addition, evolution
of kinetic, strain, and total energy from the beginning of
the simulation to a moment after the impact is given in
Fig. 28.

The same situation is also simulated with the MPM, for
which the results are illustrated in Figs. 29 and 30, rep-
resenting the situation during and after the impact, re-
spectively. For this case, the change in energy is given
in Fig. 31, which allows for the conclusion that the re-
sults obtained with the MPM are slightly less smooth
than with the GMPM; compare, for instance, Fig. 28 with
Fig. 31, regarding the energy; and Fig. 27 with Fig. 30,
regarding the shape of the material points after the im-
pact. It is also interesting to observe that the shape of the
material points simulated with the GMPM seems more
akin with the results of the finer discretization, as shown
in the following.

Afterwards, simulations with a finer discretization (392
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Figure 26 : Disks during impact. USF. GMPM.

Figure 27 : Disks after impact. USF. GMPM.

Figure 28 : Energy – coarse discr. USF. GMPM.

Figure 29 : Disks during impact. USF. MPM.

Figure 30 : Disks after impact. USF. MPM.

Figure 31 : Energy – coarse discr. USF. MPM.
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material points per disk) are presented in order to show
the influence of the results in terms of the density field
and energy conservation. The density field is, actually,
observed by means of the area (volume) of each mate-
rial point; this is illustrated through small rectangles for
each point. Only results with the GMPM are presented
here; however, the results simulated by the MPM with
this finer discretization were quite similar with those ob-
tained with the GMPM.

In Fig. 32, the situation during the impact is illustrated,
while in Fig. 33 shows the situation after the impact. The
evolution of energy for this case is given in Fig. 34, which
allows for the conclusion that the refinement leaded to a
better conservation of energy, in addition to the smoother
simulation of the fields of stress and density (volume).

Additionally, it can be observed that simulations us-
ing the GMPM provides a slight smoother results in
terms of density field (small volumes represented by blue
squares), total, kinetic, and strain energy than those using
the MPM; with more material points, the dissipation of
energy is smaller. By improving both the time and space
discretization, clearly, both methods will converge to the
same results.

Figure 32 : Bouncing disks during impact. USF. GMPM.

6 Conclusions

The material point method (MPM) is a numerical tech-
nique suited for the solution of large displacement prob-

Figure 33 : Bouncing disks after impact. USF. GMPM.

Figure 34 : Energy – fine discr. GMPM. USF.

lems in continuum mechanics. The generalized version,
GMPM, provides a higher degree of smoothness on the
computed solution. Although the method is well dis-
cussed in the literature, a straightforward presentation
containing all steps necessary for its computer imple-
mentation is not available. Thus, this paper attempted
to give all details required.

Among the details of the implementation of the MPM or
GMPM, the setting up of essential boundary conditions,
methods for the extrapolation from particles to nodes and
vice-versa, and the order for the steps for stress-update
were clarified and some caveats discussed.

Two approaches for the stress-update were considered,
following the study by Bardenhagen (2002). It is found
that the USF (update stress first) approach, which is
called before the computation of the internal forces, gives
a better conservation of the energy than the USL (update
stress last) approach.

The essential boundary conditions at fixed nodes are ap-
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plied by zeroing the DOF components of the nodes mo-
mentum during the initialization of the grid state and by
means of zeroing of the rate of momentum of nodes after
the computation of the internal and external forces.

The influence of the time and space discretization were
also investigated. It was observed that there is an
ideal balance between the number of material points
and grid nodes to achieve the best accuracy with effi-
ciency. Nonetheless, the convergence of both the MPM
and GMPM was illustrated, both in 1D and 2D situations.
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